0000000000287637

AUTHOR

Fatima El Hajj

showing 3 related works from this author

Macrocycle-Based Spin-Crossover Materials

2009

International audience; New iron(II) complexes of formula [Fe(L1)](BF(4))(2) (1) and [Fe(L2)](BF(4))(2) x H(2)O (2) (L1 = 1,7-bis(2'-pyridylmethyl)-1,4,7,10-tetraazacyclododecane; L2 = 1,8-bis(2'-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane) have been synthesized and characterized by infrared spectroscopy, variable-temperature single-crystal X-ray diffraction, and variable-temperature magnetic susceptibility measurements. The crystal structure determinations of 1 and 2 reveal in both cases discrete iron(II) monomeric structures in which the two functionalized tetraazamacrocycles (L1 and L2) act as hexadentate ligands; the iron(II) ions are coordinated with six nitrogen atoms: four from …

Coordination sphere010405 organic chemistryChemistryCrystal structure[CHIM.MATE]Chemical Sciences/Material chemistry010402 general chemistryTrigonal prismatic molecular geometry01 natural sciencesMagnetic susceptibility0104 chemical sciencesInorganic ChemistryCrystallographyParamagnetismMolecular geometrySpin crossoverOctahedral molecular geometry[CHIM]Chemical SciencesPhysical and Theoretical Chemistry
researchProduct

Guidelines to design new spin crossover materials

2010

International audience; This review focuses on new families of spin crossover (SCO) complexes based on polynitrile anions as new anionic ligands or on polyazamacrocycles as neutral macrocyclic ligands. We have shown that the structural and electronic characteristics (original coordination modes and high electronic delocalization) of the polynitrile anions can be tuned by slight chemical modifications such as substitution of functional groups or variation of the negative charge to design new discrete or polymeric SCO systems.In our ongoing work on the design of new molecular systems based on new ligands that can be fine-tuned via chemical modifications, another promising way which has been r…

Ligand field theoryDenticityStereochemistry[CHIM.INOR]Chemical Sciences/Inorganic chemistryMolecular systemsIron(II) complexes010402 general chemistry01 natural sciencesInorganic ChemistryMetalMacrocyclic ligandsDelocalized electronSpin crossoverNegative chargeMagnetic propertiesMaterials Chemistry[CHIM]Chemical Sciences[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical Chemistry010405 organic chemistryChemistrySpin crossover0104 chemical sciencesCoordination polymersPolynitrileCrystallographyvisual_artvisual_art.visual_art_mediumCoordination Chemistry Reviews
researchProduct

Front Cover: Magnetic Bistability in Macrocycle‐Based Fe II Spin‐Crossover Complexes: Counter Ion and Solvent Effects (Eur. J. Inorg. Chem. 34/2016)

2016

chemistry.chemical_classificationChemistry01 natural sciences010305 fluids & plasmasInorganic ChemistryFront coverMagnetic bistabilityChemical physicsComputational chemistrySpin crossover0103 physical sciencesSolvent effectsCounterion010301 acousticsEuropean Journal of Inorganic Chemistry
researchProduct