0000000000288312

AUTHOR

Joel C. Allred

showing 2 related works from this author

Evidence of nonthermal particles in coronal loops heated impulsively by nanoflares

2014

The physical processes causing energy exchange between the Sun's hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly sensitive to the coronal heating mechanism. High resolution observations with the Interface Region Imaging Spectrograph (IRIS) reveal rapid variability (about 20 to 60 seconds) of intensity and velocity on small spatial scales at the footpoints of hot dynamic coronal loops. The observations are consistent with numerical simulations of heating by beams of non-thermal electrons, which are generated in small impulsive heating events called "corona…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMultidisciplinaryFOS: Physical sciencesCoronal holeCoronal loopElectronAstrophysicsCoronaCoronal radiative losses3. Good healthNanoflaresAtmosphereSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar Astrophysics13. Climate actionPhysics::Space PhysicsAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaChromosphereSolar and Stellar Astrophysics (astro-ph.SR)Science
researchProduct

Investigating the Response of Loop Plasma to Nanoflare Heating Using RADYN Simulations

2018

We present the results of 1D hydrodynamic simulations of coronal loops that are subject to nanoflares, caused by either in situ thermal heating or nonthermal electron (NTE) beams. The synthesized intensity and Doppler shifts can be directly compared with Interface Region Imaging Spectrograph (IRIS) and Atmospheric Imaging Assembly (AIA) observations of rapid variability in the transition region (TR) of coronal loops, associated with transient coronal heating. We find that NTEs with high enough low-energy cutoff (EC) deposit energy in the lower TR and chromosphere, causing blueshifts (up to approximately 20 kilometers per second) in the IRIS Si IV lines, which thermal conduction cannot repro…

Electron density010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysicsElectron01 natural sciencesSun: activity0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSun: transition region010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSun: coronaAstronomy and AstrophysicsPlasmaCoronal loopAstronomy and AstrophysicThermal conductionNanoflaresIntensity (physics)Astrophysics - Solar and Stellar Astrophysicsline: profileSpace and Planetary SciencePhysics::Space PhysicsThe Astrophysical Journal
researchProduct