0000000000288543

AUTHOR

Juho E. Rajala

Toxicity of silver nanoparticles to Lumbriculus variegatus is a function of dissolved silver and promoted by low sediment pH

Toxicity of silver nanoparticles (AgNPs) to benthic organisms is a major concern. The use of AgNPs in industry and consumer products leads to increasing release of AgNPs into the aquatic environment-sediments being the major sink. Effects of sediment pH on the toxicity of AgNPs to benthic oligochaeta Lumbriculus variegatus were studied in a 23-d toxicity test. Artificially prepared sediments (pH 5 and 7) were spiked with varying concentrations of uncoated AgNP, polyvinylpyrrolidone (PVP)-coated AgNP, and silver nitrate (AgNO3 ) as dissolved Ag reference. Number of individuals and biomass change were used as endpoints for the toxicity. The toxic effects were related to the bioaccessible conc…

research product

Toxicity Testing of Silver Nanoparticles in Artificial and Natural Sediments Using the Benthic Organism Lumbriculus variegatus

The increased use of silver nanoparticles (AgNP) in industrial and consumer products worldwide has resulted in their release to aquatic environments. Previous studies have mainly focused on the effects of AgNP on pelagic species, whereas few studies have assessed the risks to benthic invertebrates despite the fact that the sediments act as a large potential sink for NPs. In this study, the toxicity of sediment-associated AgNP was evaluated using the standard sediment toxicity test for chemicals provided by the Organization of Economic Cooperation and Development. The freshwater benthic oligochaete worm Lumbriculus variegatus was exposed to sediment-associated AgNP in artificial and natural …

research product

Partitioning of nanoparticle-originated dissolved silver in natural and artificial sediments

Sediments are believed to be a major sink for silver nanoparticles (AgNPs) in the aquatic environment, but there is a lack of knowledge about the environmental effects and behavior of AgNPs in sediments. The release of highly toxic Ag+ through dissolution of AgNPs is one mechanism leading to toxic effects in sediments. We applied an ultrasound-assisted sequential extraction method to evaluate the dissolution of AgNPs and to study the partitioning of dissolved Ag in sediments. Silver was spiked into artificial and 2 natural sediments (Lake Hoytiainen sediment and Lake Kuorinka sediment) as silver nitrate (AgNO3 ), uncoated AgNPs, or polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs). In addition,…

research product