0000000000288891

AUTHOR

Jyoti Ranjan Mohanty

showing 6 related works from this author

Ultrafast Optical Demagnetization manipulates Nanoscale Spin Structure in Domain Walls

2012

During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic dem…

DYNAMICSMagnetic domainGeneral Physics and AstronomyMAGNETIZATION REVERSALPhysics::OpticsLarge scale facilities for research with photons neutrons and ionsNanotechnology02 engineering and technologyElectronFILMS01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyOptical pumping0103 physical sciencesddc:530010306 general physicsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]MultidisciplinaryCondensed matter physicsSpins[PHYS.PHYS]Physics [physics]/Physics [physics]Demagnetizing fieldALLOYGeneral Chemistry021001 nanoscience & nanotechnologyPicosecondFemtosecondX-RAYLASER0210 nano-technologyUltrashort pulse
researchProduct

Dynamics and inertia of skyrmionic spin structures

2015

Understanding the motion of magnetic skyrmions is essential if they are to be used as information carriers in devices. It is now shown that topological confinement endows the skyrmions with an unexpectedly large mass, which plays a key role in their dynamics.

Condensed Matter::Quantum GasesPhysicsSpintronicsCondensed matter physicsInformation storageSkyrmionmedia_common.quotation_subjectDynamics (mechanics)General Physics and AstronomyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectInertiaClassical mechanicsFerromagnetismddc:530Spin-½media_commonNature Physics
researchProduct

Dynamics and topological mass of skyrmionic spin structures (presentation video)

2014

Skyrmions are topologically protected particle-like configurations, with a topological complexity described by their Skyrmion number. In magnetic systems, they have been numerically predicted to exhibit rich dynamics, such as the gyrotropic and breathing modes, dominated by their topology. Recent experimental advances brought their static manipulation well under control. However, their dynamical behaviour is largely unexplored experimentally. In this work, we provide with the first direct observation of eigenmode skyrmion dynamics. In particular, we present dynamical imaging data with high temporal and spatial resolution to demonstrate the GHz gyrotropic mode of a single skyrmion bubble, as…

Condensed Matter::Quantum GasesPhysicsTopological complexitySpintronicsMagnetismSkyrmionmedia_common.quotation_subjectCondensed Matter::Mesoscopic Systems and Quantum Hall EffectInertiaTopologyClassical mechanicsNormal modeTopology (chemistry)media_commonSpin-½SPIE Proceedings
researchProduct

Magnetic states in low-pinning high-anisotropy material nanostructures suitable for dynamic imaging

2013

We present magnetic domain states in a material configuration with high (perpendicular) magnetic anisotropy and particularly low magnetic pinning. This material, a B-doped Co/Pt multilayer configuration, exhibits a strong magnetic contrast in x-ray transmission experiments, making it apt for dynamic imaging with modern synchrotron techniques, providing high spatial and high temporal resolution simultaneously. By analyzing the static spin structures in nanodisks at variable external fields, we show that CoB/Pt multilayers exhibit low enough domain wall pinning to manipulate the domain pattern with weak stimuli and in particular to move domains and domain walls. We demonstrate in a proof-of-p…

Magnetization dynamicsMaterials scienceCondensed matter physicsMagnetic domain530 Physicsbusiness.industry02 engineering and technology530 Physik021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldMagnetic anisotropyDomain wall (magnetism)Optics0103 physical sciencesddc:530Single domain010306 general physics0210 nano-technologyAnisotropybusinessSpin-½Phys. Rev. B 87, 134422
researchProduct

Holographically aided iterative phase retrieval

2012

Fourier transform holography (FTH) is a noise-resistant imaging technique which allows for nanometer spatial resolution x-ray imaging, where the inclusion of a small reference scattering object provides the otherwise missing phase information. With FTH, one normally requires a considerable distance between the sample and the reference to ensure spatial separation of the reconstruction and its autocorrelation. We demonstrate however that this requirement can be omitted at the small cost of iteratively separating the reconstruction and autocorrelation. In doing so, the photon efficiency of FTH can be increased due to a smaller illumination area, and we show how the presence of the reference p…

Physicsbusiness.industryPhase (waves)HolographyIterative reconstructionAtomic and Molecular Physics and OpticsPtychographylaw.inventionsymbols.namesakeOpticsFourier transformlawsymbolsbusinessPhase retrievalImage resolutionDigital holographyOptics Express
researchProduct

Magnetic Direct-Write Skyrmion Nanolithography

2020

Magnetic skyrmions are stable spin textures with quasi-particle behavior and attract significant interest in fundamental and applied physics. The metastability of magnetic skyrmions at zero magnetic field is particularly important to enable, for instance, a skyrmion racetrack memory. Here, the results of the nucleation of stable skyrmions and formation of ordered skyrmion lattices by magnetic force microscopy in (Pt/CoFeSiB/W)n multilayers, exploiting the additive effect of the interfacial Dzyaloshinskii-Moriya interaction, are presented. The appropriate conditions under which skyrmion lattices are confined with a dense two-dimensional liquid phase are identified. A crucial parameter to con…

Condensed Matter::Quantum GasesPhysicsApplied physicsCondensed matter physicsSkyrmionHigh Energy Physics::PhenomenologyGeneral EngineeringNucleationGeneral Physics and Astronomy02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesMagnetic fieldNanolithographyLattice (order)MetastabilityGeneral Materials ScienceMagnetic force microscope0210 nano-technologyNonlinear Sciences::Pattern Formation and SolitonsACS Nano
researchProduct