A sustainable replacement for TiO2 in photocatalyst construction materials: Hydroxyapatite-based photocatalytic additives, made from the valorisation of food wastes of marine origin
The use of waste materials and by-products in building materials is of increasing importance to improve sustainability in construction, as is the incorporation of photocatalytic materials to both combat atmospheric pollution and protect the structures and façades. This work reports the innovative use of photocatalytic hydroxyapatite (HAp) based powders, derived from Atlantic codfish bone wastes, as an additive to natural hydraulic lime mortars. HAp is the main component of bone, and hence is non-toxic and biocompatible. This is the first time that such a calcium phosphate-based photocatalyst, or indeed any fish/marine derived wastes, have been added to building materials. A key factor is th…
Valorisation of industrial iron oxide waste to produce magnetic barium hexaferrite
Barium M-type hexagonal ferrite (BaM, BaFe12O19) is an immensely important magnetic material, which we have successfully made from the simple valorisation of Fe-rich industrial waste from steel wire drawing, with addition of BaCO3 and heating in air to 1000 degrees C. The optimum ratio of Fe. Ba (producing 86 wt% BaM) was found to be 11: 1 (non-stoichiometric), and secondary phases of alpha-Fe2O3 (non-magnetic) and ZnFe2O4 (poorly antiferromagnetic) were always present. This material consisted of small submicron platelets. A hard magnetic ferrite was produced with Ms=48.6 A m(2) kg(-1) and H-c=211.5 kA m(-1). The highest density was achieved by sintering samples with Fe: Ba ratios of 11: 1 …
Pyrolysed cork-geopolymer composites: A novel and sustainable EMI shielding building material
Abstract In this investigation, and for the first time, pyrolysed sustainable cork was used to produce waste-based geopolymer-cork composites with enhanced electromagnetic interference (EMI) shielding properties. The influence of the pyrolysed cork amount and the geopolymer porosity on the EMI shielding ability of the composites was studied. The maximum total shielding effectiveness (SET) values achieved by these novel building materials (−13.8 to −15.9 dB) are equal to any other reported geopolymer microwave (MW) absorbers over the X-band, despite containing much lower carbon content. In addition, our composites were produced using an industrial waste (biomass fly ash) as raw material and …
Photocatalytic nano-composite architectural lime mortar for degradation of urban pollutants under solar and visible (interior) light
Abstract Recent advances in nano-technology and nano-additives can give enhanced properties to natural hydraulic lime (NHL), creating a multifunctional material. We have prepared a novel nanocomposite, made of a commercial mortar with 1 wt% and 5 wt% added titania nanoparticles (NPs). These TiO 2 NPs are themselves doped with 1 mol% silver, to give the material enhanced photocatalytic and antimicrobial properties. The Ag-doped TiO 2 NPs were made from a simple, costs effective, aqueous green nanosynthesis process, and the end material only contains 0.01–0.05% Ag. As this mortar is intended to both combat atmospheric pollution, and create more durable/lower maintenance building facades (plas…
Influence of sol counter-ions on the visible light induced photocatalytic behaviour of TiO2 nanoparticles
Titanium dioxide (TiO2) nanoparticles are attracting increasing interest because of their superior photocatalytic and antibacterial properties. Here, aqueous titanium oxy-hydroxide sols were made, using a green synthesis method, from the controlled hydrolysis/peptisation of titanium isopropoxide. Three different mineral acids were used to peptise the sol (HNO3, HBr and HCl), and provide counter-ions. The influence of nitrate or halide sol counter-ions on size distributions of the starting sols were measured via photon correlation spectroscopy (PCS). Semi-quantitative phase composition analysis (QPA), on the gels thermally treated at 450 and 600 degrees C, was carried out via Rietveld refine…
Reuse and recycling in construction: novel photocatalytic nano-mortars from valorised industrial wastes
Production of novel eco-composite nano-mortars for architectural finishing, designed to combat environmental pollution affecting building shells, is reported. Specimens consist of a natural hydraulic lime mortar matrix doped with various kinds of nanophotocatalysts, produced from valorized industrial wastes: TiO2-hexaferrite from Fe3O2, and Ti(SO4)2-hydroxyapatite from Atlantic codfish bones. Samples were characterized and their photocatalytic activity was evaluated. Analysis showed that industrial wastes may be usefully reused to produce a new generation of sustainable, cheap and multifunctional novel building materials.