0000000000292325

AUTHOR

Christian B. Lang

showing 2 related works from this author

Resonances in QCD

2015

We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with ${\it up}$, ${\it down}$ and ${\it strange}$ quark content were considered. For heavy-light and heavy-heavy meson systems, those with ${\it charm}$ quarks were the focus. This docum…

PhysicsQuarkQuantum chromodynamicsNuclear and High Energy PhysicsStrange quarkParticle physicsMeson010308 nuclear & particles physicsHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyHadron01 natural sciencesCharm quarkBaryonHigh Energy Physics - Phenomenology0103 physical sciencesHadrons; Mini review; QCD; Resonancesddc:530High Energy Physics::ExperimentCharm (quantum number)Nuclear Experiment010306 general physicsNuclear Physics A
researchProduct

Excited nucleons with chirally improved fermions

2003

We study positive and negative parity nucleons on the lattice using the chirally improved lattice Dirac operator. Our analysis is based on a set of three operators chi_i with the nucleon quantum numbers but in different representations of the chiral group and with different diquark content. We use a variational method to separate ground state and excited states and determine the mixing coefficients for the optimal nucleon operators in terms of the chi_i. We clearly identify the negative parity resonances N(1535) and N(1650) and their masses agree well with experimental data. The mass of the observed excited positive parity state is too high to be interpreted as the Roper state. Our results …

PhysicsQuarkNuclear and High Energy PhysicsParticle physicsNuclear TheoryHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics - Lattice (hep-lat)FOS: Physical sciencesParity (physics)Dirac operatorQuantum numberDiquarkNuclear Theory (nucl-th)High Energy Physics - Phenomenologysymbols.namesakeHigh Energy Physics - LatticeVariational methodHigh Energy Physics - Phenomenology (hep-ph)symbolsNucleonGround state
researchProduct