0000000000292524

AUTHOR

Stefano Fratini

0000-0002-6626-6114

Analysis of different geometrical features to achieve close-to-bone stiffness material properties in medical device: A feasibility numerical study

Background and objective: In orthopedic medical devices, elasto-plastic behavior differences between bone and metallic materials could lead to mechanical issues at the bone-implant interface, as stress shielding. Those issue are mainly related to knee and hip arthroplasty, and they could be responsible for implant failure. To reduce mismatching-related adverse events between bone and prosthesis mechanical properties, modifying the implant's internal geometry varying the bulk stiffness and density could be the right approach. Therefore, this feasibility study aims to assess which in-body gap geometry improves, by reducing, the bulk stiffness. Methods: Using five finite element models, a unia…

research product

Two different posterior-stabilized mobile-bearing TKA designs: navigator evaluation of intraoperative kinematic differences

Purpose: The purpose of this study was to compare two types of posterior-stabilized (PS) mobile-bearing (MB) total knee arthroplasties (TKAs). The hypothesis was that no major differences were going to be found among the two TKA designs. Methods: Two cohorts of patients who were divided according to implant design (Cohort A, new design gradually reducing radius PS MB TKA; Cohort B, traditional dual-radius PS MB TKA) were analyzed by means of intraoperative navigation. All operations were guided by a non-image-based navigation system that recorded relative femoral and tibial positions in native and implanted knees during the following kinematic tests: passive range of motion (PROM), varus–va…

research product