0000000000292749

AUTHOR

Bart Loeys

0000-0003-3703-9518

showing 5 related works from this author

Dominant variants in the splicing factor PUF60 cause a recognizable syndrome with intellectual disability, heart defects and short stature

2016

Item does not contain fulltext Verheij syndrome, also called 8q24.3 microdeletion syndrome, is a rare condition characterized by ante- and postnatal growth retardation, microcephaly, vertebral anomalies, joint laxity/dislocation, developmental delay (DD), cardiac and renal defects and dysmorphic features. Recently, PUF60 (Poly-U Binding Splicing Factor 60 kDa), which encodes a component of the spliceosome, has been discussed as the best candidate gene for the Verheij syndrome phenotype, regarding the cardiac and short stature phenotype. To date, only one patient has been reported with a de novo variant in PUF60 that probably affects function (c.505C>T leading to p.(His169Tyr)) associated wi…

0301 basic medicineMaleMESH: Heart Defects Congenital / physiopathologyMicrocephalyPathologyMESH: Heart Defects Congenital / geneticsMESH: Exome / genetics030105 genetics & heredityMESH: RNA Splicing / geneticsMicrophthalmia[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseasesMESH: ChildExomeMESH: RNA Splicing Factors / geneticsChildFrameshift MutationMESH: High-Throughput Nucleotide SequencingGenetics (clinical)Exome sequencingColobomaMESH: Frameshift MutationHigh-Throughput Nucleotide SequencingMicrodeletion syndromeMicrocephaly Verheij syndrome PUF60ChemistryPhenotypeChild PreschoolDISEASESMicrocephalyMedical geneticsFemaleRNA Splicing Factorsmedicine.symptomChromosome DeletionChromosomes Human Pair 8MESH: Dwarfism / genetics*Heart Defects Congenitalmedicine.medical_specialtyGENESAdolescentRNA SplicingMESH: Chromosome DeletionDwarfismBiologyMESH: PhenotypeShort statureArticlePUF6003 medical and health sciencesInternal medicineIntellectual Disability[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineHumansCraniofacialBiologyMESH: AdolescentNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]MESH: HumansMESH: Child Preschoolmedicine.diseaseMESH: Repressor Proteins / geneticsMESH: MaleRepressor Proteins030104 developmental biologyEndocrinologyMESH: Chromosomes Human Pair 8 / geneticsMESH: Dwarfism / physiopathologyMESH: Intellectual Disability / physiopathologyHuman medicineMESH: Intellectual Disability / geneticsVerheij syndromeMESH: Female[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

3q27.3 microdeletional syndrome: a recognisable clinical entity associating dysmorphic features, marfanoid habitus, intellectual disability and psych…

2013

Abstract: Background Since the advent of array-CGH, numerous new microdeletional syndromes have been delineated while others remain to be described. Although 3q29 subtelomeric deletion is a well-described syndrome, there is no report on 3q interstitial deletions. Methods We report for the first time seven patients with interstitial deletions at the 3q27.3q28 locus gathered through the Decipher database, and suggest this locus as a new microdeletional syndrome. Results The patients shared a recognisable facial dysmorphism and marfanoid habitus, associated with psychosis and mild to severe intellectual disability (ID). Most of the patients had no delay in gross psychomotor acquisition, but ha…

AdultMalePsychosisCandidate genePediatricsmedicine.medical_specialtyAdolescentLocus (genetics)ArachnodactylyYoung AdultIntellectual DisabilityIntellectual disabilityGeneticsMedicineHumansAbnormalities MultipleGenetics (clinical)GeneticsComparative Genomic Hybridizationbusiness.industryMood DisordersMarfanoidChromosome MappingFaciesInfantSyndromemedicine.diseasePhenotypeMood disordersChild PreschoolBone maturationFemaleHuman medicineChromosomes Human Pair 3Chromosome DeletionbusinessJournal of medical genetics
researchProduct

Contribution of molecular analyses in diagnosing Marfan syndrome and type I fibrillinopathies: an international study of 1009 probands.

2008

International audience; BACKGROUND: The diagnosis of Marfan syndrome (MFS) is usually initially based on clinical criteria according to the number of major and minor systems affected following international nosology. The number of FBN1 mutation carriers, at risk of aortic complications who would not be properly diagnosed based only on clinical grounds, is of growing importance owing to the increased availability of molecular screening. The aim of the study was to identify patients who should be considered for FBN1 mutation screening. METHODS: Our international series included 1009 probands with a known FBN1 mutation. Patients were classified as either fulfilling or not fulfilling "clinical"…

ProbandNosologyMarfan syndromeMalePediatricsSystemic diseaseMESH : International CooperationFibrillin-1International CooperationMESH : Aged[SDV.GEN] Life Sciences [q-bio]/GeneticsMarfan SyndromeMESH : ChildMESH: ChildEpidemiologyMESH : FemaleEctopia lentisChildGenetics (clinical)AortaAortic dissectionMESH: Aged0303 health sciences030305 genetics & heredityMicrofilament ProteinsMESH: AortaMESH : AdultConnective tissue disease3. Good healthFemaleMESH : Mutationmusculoskeletal diseasesAdultmedicine.medical_specialtycongenital hereditary and neonatal diseases and abnormalitiesMESH: MutationMESH : Microfilament ProteinsAdolescentMESH : MaleFibrillinsMESH: Marfan Syndrome03 medical and health sciencesMESH: Microfilament ProteinsMESH : AdolescentGeneticsmedicineHumans030304 developmental biologyAgedMESH: Adolescent[SDV.GEN]Life Sciences [q-bio]/GeneticsMESH : Marfan SyndromeMESH: Humansbusiness.industryMESH : HumansMESH : AortaMESH: Adultmedicine.diseaseMESH: MaleMESH: International CooperationMutation[ SDV.GEN ] Life Sciences [q-bio]/GeneticsbusinessMESH: FemaleJournal of medical genetics
researchProduct

The broad phenotypic spectrum of PPP2R1A -related neurodevelopmental disorders correlates with the degree of biochemical dysfunction

2021

PURPOSE: Neurodevelopmental disorders (NDD) caused by protein phosphatase 2A (PP2A) dysfunction have mainly been associated with de novo variants in PPP2R5D and PPP2CA, and more rarely in PPP2R1A. Here, we aimed to better understand the latter by characterizing 30 individuals with de novo and often recurrent variants in this PP2A scaffolding Aα subunit. METHODS: Most cases were identified through routine clinical diagnostics. Variants were biochemically characterized for phosphatase activity and interaction with other PP2A subunits. RESULTS: We describe 30 individuals with 16 different variants in PPP2R1A, 21 of whom had variants not previously reported. The severity of developmental delay …

0301 basic medicineMicrocephaly[SDV]Life Sciences [q-bio]Intellectual disability030105 genetics & heredityBioinformaticsEpilepsyNeurodevelopmental disorderIntellectual disabilityCOREProtein Phosphatase 2SPECIFICITYGenetics (clinical)PROTEIN PHOSPHATASE 2APhenotypeHypotoniaFAMILY3. Good healthPP2A[SDV] Life Sciences [q-bio]PPP2R1APPP2R5DINSIGHTSintellectual disabilityMicrocephalyMuscle Hypotoniamedicine.symptomLanguage delay[SDV.GEN.GH] Life Sciences [q-bio]/Genetics/Human geneticsArticle03 medical and health sciencesNeurodevelopmental disorder[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologymedicineHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyEpilepsybusiness.industryMacrocephalyDEPHOSPHORYLATIONmedicine.diseaseneurodevelopmental disorder030104 developmental biology[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsNeurodevelopmental DisordersSUBUNITepilepsyHuman medicineTAUbusinessTranscription Factors
researchProduct

PORCNmutations in focal dermal hypoplasia: coping with lethality

2009

The X-linked dominant trait focal dermal hypoplasia (FDH, Goltz syndrome) is a developmental defect with focal distribution of affected tissues due to a block of Wnt signal transmission from cells carrying a detrimental PORCN mutation on an active X-chromosome. Molecular characterization of 24 unrelated patients from different ethnic backgrounds revealed 23 different mutations of the PORCN gene in Xp11.23. Three were microdeletions eliminating PORCN and encompassing neighboring genes such as EBP, the gene associated with Conradi-Hunermann-Happle syndrome (CDPX2). 12/24 patients carried nonsense mutations resulting in loss of function. In one case a canonical splice acceptor site was mutated…

GeneticsMutationGenetic counselingNonsense mutationBiologymedicine.disease_causemedicine.diseaseFocal dermal hypoplasiaPORCNGeneticsmedicineMissense mutationSkewed X-inactivationGenetics (clinical)Loss functionHuman Mutation
researchProduct