0000000000293766

AUTHOR

Alexis Cooper

0000-0002-2182-0046

showing 3 related works from this author

Inhibition of histone deacetylation rescues phenotype in a mouse model of Birk-Barel intellectual disability syndrome

2020

Mutations in the actively expressed, maternal allele of the imprinted KCNK9 gene cause Birk-Barel intellectual disability syndrome (BBIDS). Using a BBIDS mouse model, we identify here a partial rescue of the BBIDS-like behavioral and neuronal phenotypes mediated via residual expression from the paternal Kcnk9 (Kcnk9pat) allele. We further demonstrate that the second-generation HDAC inhibitor CI-994 induces enhanced expression from the paternally silenced Kcnk9 allele and leads to a full rescue of the behavioral phenotype suggesting CI-994 as a promising molecule for BBIDS therapy. Thus, these findings suggest a potential approach to improve cognitive dysfunction in a mouse model of an impri…

Male0301 basic medicinePotassium Channels[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyGeneral Physics and AstronomyDiseasePhenylenediamines[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyCraniofacial AbnormalitiesHistonesMice0302 clinical medicineIntellectual disabilityImprinting (psychology)lcsh:ScienceMice KnockoutGeneticsMultidisciplinaryBehavior AnimalbiologyNeurodevelopmental disordersDevelopmental disordersQBrainPhenotypeUp-RegulationPhenotypeHistoneGene Knockdown TechniquesBenzamidesMuscle HypotoniaFemaleLocus CoeruleusEpigeneticsScienceArticleGeneral Biochemistry Genetics and Molecular BiologyGenomic Imprinting03 medical and health sciencesDevelopmental disorders ; Neurodevelopmental disorders ; EpigeneticsIntellectual DisabilitymedicineAnimalsHumansddc:610AlleleGene[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral Chemistrymedicine.diseaseHistone Deacetylase InhibitorsMice Inbred C57BLDisease Models Animal030104 developmental biologyAcetylationMutationbiology.proteinlcsh:Q030217 neurology & neurosurgery
researchProduct

Morphology and Progression in Primary Varicose Vein Disorder Due to 677C>T and 1298A>C Variants of MTHFR

2015

Background: Clinical assessment and prognostic stratification of primary varicose veins have remained controversial and the molecular pathogenesis is unknown. Previous data have suggested a contribution of the MTHFR (methylenetetrahydrofolate reductase) polymorphism c.677C>T. Methods: We collected blood and vein specimens from 159 consecutive patients undergoing varicose vein surgery, or autologous vein reconstruction for arterial occlusive disease as controls. We compared the frequencies of c.677C>T and another polymorphism of MTHFR, c.1298A>C, with morphology and types of complicated disease. Morphology was recorded as a trunk or perforator type and peripheral congestive complication was …

lcsh:R5-920medicine.medical_specialtyChronic venous insufficiencylcsh:Rlcsh:MedicineGeneral MedicineDiseaseBiologymedicine.diseaseTrunkGastroenterologyGeneral Biochemistry Genetics and Molecular BiologySurgeryMethylenetetrahydrofolate reductaseInternal medicineEdemaVaricose veinsGenotypemedicinebiology.proteinmedicine.symptomlcsh:Medicine (General)ComplicationEBioMedicine
researchProduct

Abnormal Hypermethylation at Imprinting Control Regions in Patients with S-Adenosylhomocysteine Hydrolase (AHCY) Deficiency

2016

S-adenosylhomocysteine hydrolase (AHCY) deficiency is a rare autosomal recessive disorder in methionine metabolism caused by mutations in the AHCY gene. Main characteristics are psychomotor delay including delayed myelination and myopathy (hypotonia, absent tendon reflexes etc.) from birth, mostly associated with hypermethioninaemia, elevated serum creatine kinase levels and increased genome wide DNA methylation. The prime function of AHCY is to hydrolyse and efficiently remove S-adenosylhomocysteine, the by-product of transmethylation reactions and one of the most potent methyltransferase inhibitors. In this study, we set out to more specifically characterize DNA methylation changes in blo…

Male0301 basic medicineMethyltransferaselcsh:MedicineArtificial Gene Amplification and ExtensionGlycine N-MethyltransferaseBiochemistryPolymerase Chain Reactionlaw.inventionMethionine0302 clinical medicinelawAmino Acidslcsh:SciencePolymerase chain reactionGeneticsDNA methylationMammalian GenomicsMultidisciplinaryOrganic CompoundsGenomicsMethylationChromatinEnzymes3. Good healthNucleic acidsChemistryPhysical SciencesDNA methylationEpigeneticsFemaleDNA modificationChromatin modificationResearch ArticleChromosome biologyCell biologyAlu elementBiologyResearch and Analysis MethodsGenomic Imprinting03 medical and health sciencesAlu ElementsGeneticsSulfur Containing Amino AcidsHumansRepeated SequencesMolecular Biology TechniquesMolecular BiologyAmino Acid Metabolism Inborn ErrorsGeneBiology and life sciencesOrganic Chemistrylcsh:RChemical CompoundsInfant NewbornProteinsInfantDNAMethyltransferasesCreatineMolecular biologyLong Interspersed Nucleotide Elements030104 developmental biologyDifferentially methylated regionsAnimal GenomicsEnzymologyAHCY ; Hypermethylationlcsh:QGene expressionGenomic imprinting030217 neurology & neurosurgeryDevelopmental BiologyPLOS ONE
researchProduct