0000000000293942

AUTHOR

Aleksey Shatunov

showing 4 related works from this author

In-frame deletion in the seventh immunoglobulin-like repeat of filamin C in a family with myofibrillar myopathy.

2009

Myofibrillar myopathies (MFMs) are an expanding and increasingly recognized group of neuromuscular disorders caused by mutations in DES, CRYAB, MYOT, and ZASP. The latest gene to be associated with MFM was FLNC; a p.W2710X mutation in the 24th immunoglobulin-like repeat of filamin C was shown to be the cause of a distinct type of MFM in several German families. We studied an International cohort of 46 patients from 39 families with clinically and myopathologically confirmed MFM, in which DES, CRYAB, MYOT, and ZASP mutations have been excluded. In patients from an unrelated family a 12-nucleotide deletion (c.2997_3008del) in FLNC resulting in a predicted in-frame four-residue deletion (p.Val…

MaleFilaminsDNA Mutational AnalysisImmunoblottingMolecular Sequence DataImmunoglobulinsmacromolecular substancesBiologymedicine.disease_causeFilaminArticle03 medical and health sciences0302 clinical medicineContractile ProteinsMuscular DiseasesMyofibrilsGeneticsmedicineHumansFLNCAmino Acid SequenceMyopathyRepeated sequenceMuscle SkeletalGenePeptide sequenceGenetics (clinical)030304 developmental biologyRepetitive Sequences Nucleic AcidSequence DeletionGeneticsFamily Health0303 health sciencesMutationSequence Homology Amino AcidMicrofilament Proteinsmedicine.diseaseMolecular biologyImmunohistochemistry3. Good healthMicroscopy ElectronMutationFemalemedicine.symptom030217 neurology & neurosurgeryLimb-girdle muscular dystrophyEuropean journal of human genetics : EJHG
researchProduct

Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

2018

© 2018 Elsevier Inc.

MaleAls geneGenome-wide association studyFAMILIAL ALSALS; axonal transport; cargo; GWAS; KIF5A; WES; WGS0302 clinical medicine80 and overPsychologyGWASKIF5AAetiologycargoAged 80 and over0303 health sciencesFrench ALS ConsortiumKinesinKINESIN HEAVY-CHAINCognitive Sciencesaxonal transportHumanHereditary spastic paraplegiaNeuroscience(all)Single-nucleotide polymorphismTARGETED DISRUPTIONArticle03 medical and health sciencesGeneticsHumansAmino Acid SequenceLoss functionAgedHEXANUCLEOTIDE REPEATNeuroscience (all)MUTATIONSAmyotrophic Lateral Sclerosis3112 Neurosciences1702 Cognitive Sciencemedicine.diseaseITALSGEN ConsortiumAnswer ALS Foundation030104 developmental biologyALS Sequencing ConsortiumHuman medicine1109 Neurosciences030217 neurology & neurosurgery0301 basic medicineALS; GWAS; KIF5A; WES; WGS; axonal transport; cargo[SDV]Life Sciences [q-bio]KinesinsNeurodegenerativeGenetic analysisGenomeAMYOTROPHIC-LATERAL-SCLEROSIS3124 Neurology and psychiatryCohort StudiesPathogenesisLoss of Function MutationMissense mutation2.1 Biological and endogenous factorsAmyotrophic lateral sclerosisNYGC ALS ConsortiumGeneticsGeneral NeuroscienceALS axonal transport cargo GWAS KIF5A WES WGSMiddle AgedPhenotypeSettore MED/26 - NEUROLOGIANeurologicalProject MinE ALS Sequencing ConsortiumKinesinWESFemaleAdultBiologyGENOTYPE IMPUTATIONALS; axonal transport; cargo; GWAS; KIF5A; WES; WGS; Adult; Aged; Aged 80 and over; Amino Acid Sequence; Amyotrophic Lateral Sclerosis; Cohort Studies; Female; Genome-Wide Association Study; Humans; Kinesin; Loss of Function Mutation; Male; Middle Aged; Young AdultNOYoung AdultRare DiseasesmedicineSLAGEN ConsortiumGene030304 developmental biologyClinical Research in ALS and Related Disorders for Therapeutic Development (CReATe) ConsortiumNeurology & NeurosurgeryHuman GenomeNeurosciencesAXONAL-TRANSPORTBrain DisordersALS; axonal transport; cargo; GWAS; KIF5A; WES; WGS;Family memberDNA-DAMAGEMOTOR-NEURONS3111 BiomedicineCohort StudieALSGenomic Translation for ALS Care (GTAC) ConsortiumWGSAmyotrophic Lateral SclerosiGenome-Wide Association StudyALS; axonal transport; cargo; GWAS; KIF5A; WES; WGS; Neuroscience (all)
researchProduct

ATXN2 trinucleotide repeat length correlates with risk of ALS

2017

We investigated a CAG trinucleotide repeat expansion in the ATXN2 gene in amyotrophic lateral sclerosis (ALS). Two new case-control studies, a British dataset of 1474 ALS cases and 567 controls, and a Dutch dataset of 1328 ALS cases and 691 controls were analyzed. In addition, to increase power, we systematically searched PubMed for case-control studies published after 1 August 2010 that investigated the association between ATXN2 intermediate repeats and ALS. We conducted a meta-analysis of the new and existing studies for the relative risks of ATXN2 intermediate repeat alleles of between 24 and 34 CAG trinucleotide repeats and ALS. There was an overall increased risk of ALS for those carry…

MaleExpansion0301 basic medicineAgingATXN2 geneSettore MED/03 - GENETICA MEDICA0302 clinical medicineTrinucleotide RepeatsGenetic Report AbstractAmyotrophic lateral sclerosisAtaxin-2GeneticsCAGGeneral NeuroscienceATXN2Triplet3. Good healthFemalePsychologyNeurovetenskaperRiskNeuroscience(all)Age of onsetClinical Neurology03 medical and health sciencesSCA2Trinucleotide repeatJournal ArticlemedicineHumansAlleleAllelesGenetic Association StudiesAmyotrophic lateral sclerosiIntermediate expansionNeuroscience (all)NeurosciencesExponential riskCase-control studyAmyotrophic lateral sclerosismedicine.diseaseClinical neurologyAgeing030104 developmental biologyCase-Control StudiesHuman medicineNeurology (clinical)ALSGeriatrics and GerontologyAge of onsetTrinucleotide Repeat ExpansionTrinucleotide repeat expansionALS; ATXN2; Age of onset; Amyotrophic lateral sclerosis; CAG; Expansion; Exponential risk; Intermediate expansion; Risk; SCA2; Trinucleotide repeat; TripletNeuroscience030217 neurology & neurosurgeryMeta-AnalysisDevelopmental BiologyNeurobiology of Aging
researchProduct

A series of West European patients with severe cardiac and skeletal myopathy associated with a de novo R406W mutation in desmin.

2003

Desminopathy is a familial or sporadic cardiac and skeletal muscular dystrophy associated with mutations in desmin. We have previously characterized a de novo desmin R406W mutation in a patient of European origin with early onset muscle weakness in the lower extremities and atrioventricular conduction block requiring a permanent pacemaker. The disease relentlessly progressed resulting in severe incapacity within 5 years after onset. We have now identified three other patients with early onset rapidly progressive cardiac and skeletal myopathy caused by this same desmin R406W mutation. The mutation was present in each studied patient, but not in their parents or other unaffected family member…

AdultMaleModels Molecularmedicine.medical_specialtyPathologyNeurologyHeart diseaseAdolescentAmino Acid MotifsCardiomyopathymacromolecular substancesDiseaseBiologyProtein Structure SecondaryDesmin03 medical and health sciences0302 clinical medicineMuscular DiseasesmedicineHumansMuscular dystrophyMyopathyMuscle SkeletalConserved Sequence030304 developmental biology0303 health sciencesMuscle WeaknessBase SequenceMyocardiumMuscle weaknessAnatomymedicine.diseasePedigreeEuropeHeart BlockNeurologyAmino Acid SubstitutionMutationDisease ProgressionDesminFemaleNeurology (clinical)medicine.symptomCardiomyopathies030217 neurology & neurosurgeryJournal of neurology
researchProduct