0000000000294314

AUTHOR

M. Laatiaoui

First Study on Nihonium (Nh, Element 113) Chemistry at TASCA

Frontiers in Chemistry 9, 753738 (2021). doi:10.3389/fchem.2021.753738

research product

Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy

Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…

research product

The cryogenic gas stopping cell of SHIPTRAP

The overall efficiency of the Penning-trap mass spectrometer SHIPTRAP at GSI Darmstadt, employed for high-precision mass measurements of exotic nuclei in the mass region above fermium, is presently mostly limited by the stopping and extraction of fusion-evaporation products in the SHIPTRAP gas cell. To overcome this limitation a second-generation gas cell with increased stopping volume was designed. In addition, its operation at cryogenic temperatures leads to a higher gas density at a given pressure and an improved cleanliness of the helium buffer gas. Here, the results of experiments with a 219Rn recoil ion source are presented. An extraction efficiency of 74(3)% was obtained, a significa…

research product

A gas-jet apparatus for high-resolution laser spectroscopy on the heaviest elements at SHIP

© 2019 Elsevier B.V. Laser spectroscopy enables the determination of fundamental atomic and nuclear properties with high precision. In view of the low production rates of the heaviest elements, a high total efficiency is a crucial requirement for any experimental setup to be used in on-line experiments. The setup requires the use of gas stopping techniques to slow down the radionuclides of interest. In previous studies laser spectroscopy was performed inside a gas-filled stopping cell with a limited spectral resolution of a few GHz. Collisional broadening inside stopping cells ultimately limits the precision of laser spectroscopic studies and hampers in particular hyperfine spectroscopy. Th…

research product

The 48Ca+181Ta reaction: Cross section studies and investigation of neutron-deficient 86 ≤ Z ≤ 93 isotopes

© 2019 Fusion-evaporation reactions with the doubly magic projectile 48 Ca were used to access neutron-deficient nuclei around neptunium at the velocity filter SHIP, and investigated using the COMPASS decay spectroscopy station. With the use of digital electronics, several isotopes produced via neutron, proton, and α evaporation channels were identified by establishing correlated α-decay chains with short-lived sub-μs members. Data are given on decay chains stemming from 225,226 Np, 225 U, and 222,223 Pa. New information on the isotopes 225,226 Np and 222 Pa was obtained. Production cross sections of nuclei in the region using a variety of projectiles are discussed. The measured production …

research product

Electronic structure of Rf+ (Z=104) from ab initio calculations

We report calculation of the energy spectrum and the spectroscopic properties of the superheavy element ion: ${\mathrm{Rf}}^{+}$. We use the four-component relativistic Dirac-Coulomb Hamiltonian and the multireference configuration interaction model to tackle the complex electronic structure problem that combines strong relativistic effects and electron correlation. We determine the energies of the ground and the low-lying excited states of ${\mathrm{Rf}}^{+}$, which originate from the $7{s}^{2}6{d}^{1},\phantom{\rule{0.28em}{0ex}}7{s}^{1}6{d}^{2},\phantom{\rule{0.28em}{0ex}}7{s}^{2}7{p}^{1}$, and $7{s}^{1}6{d}^{1}7{p}^{1}$ configurations. The results are discussed vis-\`a-vis the lighter h…

research product

Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP

Abstract The experimental determination of atomic levels and the first ionization potential of the heaviest elements ( Z ⩾ 100 ) is key to challenge theoretical predictions and to reveal changes in the atomic shell structure. These elements are only artificially produced in complete-fusion evaporation reactions at on-line facilities such as the GSI in Darmstadt at a rate of, at most, a few atoms per second. Hence, highly sensitive spectroscopic methods are required. Laser spectroscopy is one of the most powerful and valuable tools to investigate atomic properties. In combination with a buffer-gas filled stopping cell, the Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniq…

research product

COMPASS—A COMPAct decay spectroscopy set-up

Abstract A compact silicon detector array with high spatial granularity and fast, fully digital data recording has been developed and commissioned for the investigation of heavy and superheavy nuclear species. The detector array can be combined in close geometry with large volume germanium detectors. It offers comprehensive particle and photon coincidence and correlation spectroscopy by highly efficient evaporation residue, α , γ , conversion electron and X-ray detection supported by the high granularity of the implantation chip. Access to fast decay events in the sub-microsecond region is made possible by the fast timing properties of the digital signal processing. A novel Si-chip support …

research product

Ca48+Bk249Fusion Reaction Leading to ElementZ=117: Long-Livedα-DecayingDb270and Discovery ofLr266

The superheavy element with atomic number Z=117 was produced as an evaporation residue in the 48Ca+249Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope 294-117 and its decay products. A hitherto unknown α-decay branch in 270Db (Z=105) was observed, which populated the new isotope 266Lr (Z=103). The identification of the long-liv…

research product

Characterization of Supersonic Gas Jets for High-Resolution Laser Ionization Spectroscopy of Heavy Elements

© 2018 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the »https://creativecommons.org/licenses/by/4.0/» Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. The method of laser spectroscopy in supersonic gas jets was proposed for high-resolution and high-efficiency in-gas laser ionization and spectroscopy studies of short-lived nuclei. The flow properties of such supersonic gas jets have been characterized under off-line conditions. Planar laser-induced fluorescence spectroscopy of s…

research product

Prospects for laser spectroscopy, ion chemistry and mobility measurements of superheavy elements in buffer-gas traps

Abstract Laser spectroscopic methods are reviewed which are of potential interest for the investigation of atomic and ionic level structures of superheavy elements. The latter are defined here as the trans-fermium elements with Z > 100 for which no experimental atomic or ionic level structure information is known so far, and which cannot be bred in high flux nuclear power reactors via successive neutron capture. The principles of suitable laser spectroscopic methods are described, and illustrated by examples of real experiments. The addressed methods include single-ion spectroscopy in Paul traps, laser-induced fluorescence spectroscopy (LIF), radiation-detected optical pumping (RADOP), radi…

research product

Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion

Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A…

research product

On the adsorption and reactivity of element 114, flerovium

Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character. Here, we present further experimental data on adsorption studies of Fl on silicon oxide and gold surfaces, accounting for the inhomogeneous nature of the surface, as it was used in the experiment and analyzed as part of the reported studies. We confirm that Fl is highly v…

research product

Precision Measurement of the First Ionization Potential of Nobelium

One of the most important atomic properties governing an element's chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626 21±0.000 05  eV. This work provides a stringent benchmark for st…

research product

Direct detection of the elusive 229thorium isomer: Milestone towards a nuclear clock

Recently, the first direct detection of the long-searched low-lying isomeric first excited state of 229Th could be realized via its internal conversion decay branch, which confirms the isomer's existence and lays the foundation for precise studies of its decay parameters, in particular its half-life and excitation energy. Follow-up studies confirmed the theoretically expected lifetime reduction by about 109 of neutral 229mTh compared to charged isomers with τ∼10 μS thus emphasizing the need to efficiently suppress internal conversion when aiming for the detection of a potential photonic decay branch of 229mTh. Work towards precisely determining the excitation energy of the thorium isomer is…

research product

Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility…

research product

High-precision ab initio calculations of the spectrum of Lr$^+$

The planned measurement of optical resonances in singly-ionised lawrencium (Z = 103) requires accurate theoretical predictions to narrow the search window. We present high-precision, ab initio calculations of the electronic spectra of Lr$^+$ and its lighter homologue lutetium (Z = 71). We have employed the state-of-the-art relativistic Fock space coupled cluster approach and the AMBiT CI+MBPT code to calculate atomic energy levels, g-factors, and transition amplitudes and branching-ratios. Our calculations are in close agreement with experimentally measured energy levels and transition strengths for the homologue Lu$^+$ , and are well-converged for Lr$^+$ , where we expect a similar level o…

research product

Recent Upgrades of the SHIPTRAP Setup: On the Finish Line Towards Direct Mass Spectroscopy of Superheavy Elements

With the Penning-trap mass spectrometer SHIPTRAP at GSI, Darmstadt, it is possible to investigate exotic nuclei in the region of the heaviest elements. Few years ago, challenging experiments led to the direct measurements of the masses of neutron-deficient isotopes with Z = 102,103 around N = 152. Thanks to recent advances in cooling and ion-manipulation techniques, a major technical upgrade of the setup has been recently accomplished to boost its efficiency. At present, the gap to reach more rare and shorter-lived species at the limits of the nuclear landscape has been narrowed. ispartof: pages:423-429 ispartof: Acta Physica Polonica B vol:48 issue:3 pages:423-429 ispartof: location:Zakopa…

research product

Search for elements 119 and 120

A search for production of the superheavy elements with atomic numbers 119 and 120 was performed in the 50Ti+249Bk and 50Ti+249Cf fusion-evaporation reactions, respectively, at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. Over four months of irradiation, the 249Bk target partially decayed into 249Cf, which allowed for a simultaneous search for both elements. Neither was detected at cross-section sensitivity levels of 65 and 200 fb for the 50Ti+249Bk and 50Ti+249Cf reactions, respectively, at a midtarget beam energy of Elab=281.5 MeV. The nonobservation of elements 119 and 120 is discussed within the concept of fusion-evaporation reactions including various theoretical pr…

research product

In-gas laser ionization and spectroscopy of actinium isotopes near the N=126 closed shell

The in-gas laser ionization and spectroscopy (IGLIS) techniquewas applied on the $^{212–215}$Ac isotopes, produced at the Leuven Isotope Separator On-Line (LISOL) facility by using the in-gas-cell and the in-gas-jet methods. The first application under on-line conditions of the in-gas-jet laser spectroscopy method showed a superior performance in terms of selectivity, spectral resolution, and efficiency in comparison with the in-gas-cell method. Following the analysis of both experiments, the magnetic-dipole moments for the $^{212–215}$Ac isotopes, electric-quadrupole moments and nuclear spins for the $^{214,215}$Ac isotopes are presented and discussed. A good agreement is obtained with lar…

research product

A setup to develop novel Chemical Isobaric SEparation (CISE)

Abstract Gas catchers are widely used to thermalize nuclear reaction products and subsequently extract them for precision measurements. However, impurities in the inert stopping gas can chemically react with the ions and thus influence the extraction efficiency. So far, chemical reactions in the gas-catcher have not been investigated in detail. Therefore, we are currently building a new setup to develop Chemical Isobaric SEparation (CISE) with the aim to understand the chemistry inside the gas-catcher and to explore its potential as a new technique for separation of isobars. In this paper, we give a short description of the setup together with the ion transportation studies performed via io…

research product

Laser Resonance Chromatography of Superheavy Elements.

Optical spectroscopy constitutes the historical path to accumulate basic knowledge on the atom and its structure. Former work based on fluorescence and resonance ionization spectroscopy enabled identifying optical spectral lines up to element 102, nobelium. The new challenges faced in this research field are the refractory nature of the heavier elements and the decreasing production yields. A new concept of ion-mobility-assisted laser spectroscopy is proposed to overcome the sensitivity limits of atomic structure investigations persisting in the region of the superheavy elements. The concept offers capabilities of both broadband-level searches and high-resolution hyperfine spectroscopy of s…

research product

The performance of the cryogenic buffer-gas stopping cell of SHIPTRAP

Direct high-precision mass spectrometry of the heaviest elements with SHIPTRAP, at GSI in Darmstadt, Germany, requires high efficiency to deal with the low production rates of such exotic nuclides. A second-generation gas stopping cell, operating at cryogenic temperatures, was developed and recently integrated into the relocated system to boost the overall efficiency. Offline measurements using 223Ra and 225Ac recoil-ion sources placed inside the gas volume were performed to characterize the gas stopping cell with respect to purity and extraction efficiency. In addition, a first online test using the fusion-evaporation residue 254No was performed, resulting in a combined stopping and extrac…

research product

K isomerism in Rf255 and total kinetic energy measurements for spontaneous fission of Rf255,256,258

Spontaneous fission properties of the isotopes $^{255}\mathrm{Rf}$, $^{256}\mathrm{Rf}$, and $^{258}\mathrm{Rf}$ produced in the reactions $^{50}\mathrm{Ti}+^{207}\mathrm{Pb}$, $^{50}\mathrm{Ti}+^{208}\mathrm{Pb}$, and $^{50}\mathrm{Ti}+^{209}\mathrm{Bi}$ were studied. The method of time and position correlations was used to identify spontaneous fission events. The correction to the energy deficit in measured total kinetic energy (TKE) determined on the basis of a study of $^{252}\mathrm{No}$ was applied to evaluate the $\overline{\mathrm{TKE}}$ of investigated rutherfordium isotopes. A signature which we assigned tentatively to bimodal fission was observed in TKE distributions of $^{255}\m…

research product

Fusion reaction Ca48+Bk249 leading to formation of the element Ts ( Z=117 )

The heaviest currently known nuclei, which have up to 118 protons, have been produced in 48Ca induced reactions with actinide targets. Among them, the element tennessine (Ts), which has 117 protons, has been synthesized by fusing 48Ca with the radioactive target 249Bk, which has a half-life of 327 d. The experiment was performed at the gas-filled recoil separator TASCA. Two long and two short α decay chains were observed. The long chains were attributed to the decay of 294Ts. The possible origin of the short-decay chains is discussed in comparison with the known experimental data. They are found to fit with the decay chain patterns attributed to 293Ts. The present experimental results confi…

research product

Alternative approach to populate and study the $^{229}Th$ nuclear clock isomer

A new approach to observe the radiative decay of the $^{229}$Th nuclear isomer, and to determine its energy and radiative lifetime, is presented. Situated at a uniquely low excitation energy, this nuclear state might be a key ingredient for the development of a nuclear clock, a nuclear laser and the search for time variations of the fundamental constants. The isomer's $\gamma$ decay towards the ground state will be studied with a high-resolution VUV spectrometer after its production by the $\beta$ decay of $^{229}$Ac. The novel production method presents a number of advantages asserting its competitive nature with respect to the commonly used $^{233}$U $\alpha$-decay recoil source. In this …

research product

117番元素Ts合成のための48Ca+249Bk融合反応

We have performed an experiment to synthesize the element 117 (Ts) with the $^{48}$Ca+$^{249}$Bk fusion reaction. Four $\alpha$-decay chains attributed to the element 117 were observed. Two of them were long decay chains which can be assigned to the one originating from the $\alpha$ decay of $^{294}$Ts. The other two were short decay chains which are consistent with the one originating from the $\alpha$ decay of $^{293}$Ts. We have compared the present results with the literature data, and found that our present results mostly confirmed the literature data, leading to the firm confirmation of the synthesis of the element 117.

research product