0000000000294365

AUTHOR

Mariana Ilie

showing 6 related works from this author

Diode laser welding of ABS: Experiments and process modeling

2009

International audience; The laser beam weldability of acrylonitrile/butadiene/styrene (ABS) plates is determined by combining both experimental and theoretical aspects. In modeling the process, an optical model is used to determine how the laser beam is attenuated by the first material and to obtain the laser beam profile at the interface. Using this information as the input data to a thermal model, the evolution of the temperature field within the two components can be estimated. The thermal model is based on the first principles of heat transfer and utilizes the temperature variation laws of material properties. Corroborating the numerical results with the experimental results, some impor…

0209 industrial biotechnologyProcess modelingMaterials scienceWeldabilityMechanical engineeringFOS: Physical sciences02 engineering and technologySemiconductor laser theory020901 industrial engineering & automationOptics[ PHYS.MECA.THER ] Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]Semitransparent polymersElectrical and Electronic EngineeringDiodebusiness.industryACLLaser beam welding[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology[ SPI.MECA.THER ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph]Atomic and Molecular Physics and OpticsExperimental designElectronic Optical and Magnetic Materials[ CHIM.MATE ] Chemical Sciences/Material chemistryHeat transfer[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph][SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph]Laser welding0210 nano-technologyReduction (mathematics)Material propertiesbusinessPhysics - OpticsOptics (physics.optics)
researchProduct

Laser beam scattering effects in non-absorbent inhomogenous polymers

2007

Ilie, Mariana Kneip, Jean-Christophe Mattei, Simone Nichici, Alexandru Roze, Claude Girasole, Thierry; In this paper a numerical model for laser beam scattering in the semi-transparent polymers is presented, using a Monte Carlo algorithm and the Mie theory. The algorithm correctly accounts for the independent multiply-scattered light. We describe the algorithm, present a number of important parameters that account in the welding process, and explicitly show how the algorithm can be used to estimate the laser beam intensity both inside the semi-transparent component and at the welding interface and the beam widening. For the model validation an experimental bench test has been realized and s…

Materials scienceMonte Carlo method02 engineering and technologyWelding01 natural sciencesBeam parameter productlaw.invention010309 opticsOpticslaw0103 physical sciencesElectrical and Electronic EngineeringMonte Carlo algorithmbusiness.industryMechanical EngineeringLaser beam welding021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicPhysics::Accelerator PhysicsM squaredLaser beam quality0210 nano-technologybusiness0143-8166Beam (structure)
researchProduct

Through-transmission laser welding of polymers – temperature field modeling and infrared investigation

2007

The purpose of the present study is to estimate the weldability of a polymeric material couple according to their thermal and optical properties. A first model based on Mie theory and Monte Carlo method describes the laser beam behavior in semi-transparent media and makes it possible to approximate the laser power distribution at the interface of the two materials. A second model based on finite element method permits the temperature field estimation into both parts to be welded. The results are validated by infrared thermography.

0209 industrial biotechnologyMaterials sciencebusiness.industryMie scatteringMonte Carlo methodWeldabilityLaser beam welding02 engineering and technologyWelding021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsFinite element methodElectronic Optical and Magnetic Materialslaw.invention020901 industrial engineering & automationOpticslawThermographyLaser power scaling0210 nano-technologybusinessInfrared Physics & Technology
researchProduct

laser beam scattering effects in non-homogeneous polymers

2007

Laser Welding; Light Scattering ;Polymer; Mie Theory; Monte Carlo; International audience; In this paper a numerical model for laser beam scattering in the semi-transparent polymers is presented, using a Monte Carlo algorithm and the Mie theory. The algorithm correctly accounts for the independent multiply-scattered light. We describe the algorithm, present a number of important parameters that account in the welding process, and explicitly show how the algorithm can be used to estimate the laser beam intensity both inside the semi-transparent component and at the welding interface and the beam widening. For the model validation an experimental bench test has been realized and some results …

[PHYS.MECA.THER] Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph][ PHYS.MECA.THER ] Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph][PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph][SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph]Physics::Accelerator Physics[ SPI.MECA.THER ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph][SPI.MECA.THER] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph]
researchProduct

The infrared thermography control of the laser welding of amourphous polymers

2008

International audience; In laser welding technique, a real-time control of temperature distribution inside the irradiated materials is essential when attempting to optimize the process. For all laser welding methods that operate by the transmission principle, the difficulty of recording the developed temperature at the interface derives from the fact that materials to be welded are in contact throughout the entire process. In the present study, in order to overcome this issue, a contact-free method such the infrared thermography is used for surface temperature measurement. Corroborating this data with a numerical simulation of the temperature field evolution inside the components, an assess…

[PHYS.MECA.THER] Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]Thermal modelingAmorphous polymer[ PHYS.MECA.THER ] Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph][PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph][SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph]Infrared thermographyLaser welding[ SPI.MECA.THER ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph][SPI.MECA.THER] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph]
researchProduct

The infrared thermography control of the laser welding of amorphous polymers

2008

In laser welding technique, a real-time control of temperature distribution inside the irradiated materials is essential when attempting to optimize the process. For all laser welding methods that operate by the transmission principle, the difficulty of recording the developed temperature at the interface derives from the fact that materials to be welded are in contact throughout the entire process. In the present study, in order to overcome this issue, a contact-free method such the infrared thermography is used for surface temperature measurement. Corroborating this data with a numerical simulation of the temperature field evolution inside the components, an assessment of optimal process …

Temperature controlMaterials sciencebusiness.industryMechanical EngineeringLaser beam weldingWeldingCondensed Matter PhysicsTemperature measurementlaw.inventionAmorphous solidOpticsSurface metrologylawNondestructive testingThermographyGeneral Materials SciencebusinessNDT & E International
researchProduct