0000000000294445
AUTHOR
Roberto Di Chio
DFT and kinetic evidences of the preferential CO oxidation pattern of manganese dioxide catalysts in hydrogen stream (PROX)
Abstract The oxidation functionality of Mn(IV) sites has been assessed by density functional theory (DFT) analysis of adsorption and activation energies of CO, H2 and O2 on a model Mn4O8 cluster. DFT calculations indicate that Mn(IV) atoms prompt an easy CO conversion to CO2 via a reaction path involving both catalyst and gas-phase oxygen species, while much greater energy barriers hinder H2 oxidation. Accordingly, a MnCeOx catalyst (Mnat/Ceat, 5) with large exposure of Mn(IV) sites shows a remarkable CO oxidation performance at T ≥ 293 K and no H2 oxidation activity below 393 K. Empiric kinetics disclose that the catalyst-oxygen abstraction step determines both CO and H2 oxidation rate, al…
DFT insights into the oxygen-assisted selective oxidation of benzyl alcohol on manganese dioxide catalysts
Abstract The reactivity pattern of the MnO2 catalyst in the selective aerobic oxidation of benzyl alcohol is assessed by density functional theory (DFT) analysis of adsorption energies and activation barriers on a model Mn4O8 cluster. DFT calculations predict high reactivity of defective Mn(IV) sites ruling a surface redox mechanism, L-H type, involving gas-phase oxygen. Bare and promoted (i.e., CeOx and FeOx) MnOx materials with high surface exposure of Mn(IV) sites were synthesized to assess kinetic and mechanistic issues of the selective aerobic oxidation of benzyl alcohol on real catalysts (T, 333–363 K). According to DFT predictions, the experimental study shows: i) comparable activity…