0000000000295290

AUTHOR

J. Dailing

showing 3 related works from this author

Observation of high-energy neutrinos using Cerenkov detectors embedded deep in Antarctic ice.

2001

Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova2, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by mu…

PhysicsAntarctic Muon And Neutrino Detector ArrayMultidisciplinaryPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoAstronomyAstrophysicsSolar neutrino problemCosmic neutrino backgroundNeutrino detectorMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyNature
researchProduct

RECENT RESULTS FROM AMANDA

2001

We present results based on data taken in 1997 with the 302-PMT Antarctic Muon and Neutrino Detector Array-B10 ("AMANDA-B10") array. Atmospheric neutrinos created in the northern hemisphere are observed indirectly through their charged current interactions which produce relativistic, Cherenkov-light-emitting upgoing muons in the South Pole ice cap. The reconstructed angular distribution of these events is in good agreement with expectation and demonstrates the viability of this ice-based device as a neutrino telescope.

PhysicsNuclear and High Energy PhysicsMuonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsAstrophysicsSolar neutrino problemAtomic and Molecular Physics and OpticsNeutrino detectorMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino oscillationPhysics::Atmospheric and Oceanic PhysicsCharged currentInternational Journal of Modern Physics A
researchProduct

Status of the neutrino telescope AMANDA: Monopoles and WIMPs

2001

The neutrino telescope AMANDA has been set up at the geographical South Pole as first step to a neutrino telescope of the scale of one cubic kilometer, which is the canonical size for a detector sensitive to neutrinos from Active Galactic Nuclei (AGN), Gamma Ray Bursts (GRB) and Topological Defects (TD). The location and depth in which the detector is installed is given by the requirement to detect neutrinos by the Cherenkov light produced by their reaction products and to keep the background due to atmospheric muons as small as possible. However, a detector optimized for this purpose is also capable to detect the bright Cherenkov light from relativistic Monopoles and neutrino signals from …

PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaSolar neutrinoDark matterAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsSolar neutrino problemNeutrino detectorMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyCherenkov radiation
researchProduct