0000000000295979

AUTHOR

Latif A.

Fabrication of Billet from Aluminum Alloys AA 2011-T3/7075 Chips through Friction Stir Consolidation

Recently evolving Solid-State Recycling (SSR) techniques have shown promising features to recycle metals scraps more efficiently compared to remelting-based approaches. Among these SSR methods, Friction Stir Consolidation (FSC) has been successfully tested to transform metals chips directly into semi or final solid products. Therefore, researchers explored FSC critical process parameters and their subsequent effects on quality in terms of the mechanical and metallurgical properties of the billet. All the previous studies of FSC were limited to developing billet of mono materials. Therefore, in this research, an attempt was made to go beyond the idea of recycling; in fact, a billet of two di…

research product

Characterization of friction stir consolidated recycled billet by uniaxial compression tests with miniaturized cylindrical specimen

Abstract. Friction stir consolidation (FSC) is a solid-state recycling method that directly converts machining scraps into semifinished billets. This process has been proven to be a more energy efficient and environmentally friendly technique compared to remelting based conventional recycling methods. During FSC, machining chips are transformed into a solid billet by the stirring action and friction heat of the rotating tool. Due to process mechanics, especially temperature gradient and strain rate, billets have shown different hardness values and grain size distribution across their sections. Therefore, in this research, miniaturized upsetting samples are extracted from the FSC billet. The…

research product

Progresses in multi-materials billet manufacturing out of metal scraps through friction stir consolidation

Abstract. The evolution of Friction Stir Consolidation (FSC) from recycling towards upcycling technique proved to be one of the excellent solid-state methods for manufacturing functionally graded billets. Multi-material Functional Graded Materials (FGMs) represent a novel class of materials characterized by a gradual change in properties and functions which can be tailored to enhance components performance. Manufacturing techniques play a critical role in achieving the designed compositional and microstructural distribution. Specifically, FSC allows the manufacturing of FGM billets out of metallic chips; the mixing of different metallic chips offers mutually exclusive mechanical properties …

research product