0000000000296944

AUTHOR

Loredana Scalschi

showing 3 related works from this author

ROLE OF NH4+ NUTRITION ON SALT-INDUCED OXIDATIVE STRESS IN CARRIZO CITRANGE PLANTS

2015

chemistry.chemical_classificationHorticultureChemistrymedicineSalt (chemistry)Horticulturemedicine.disease_causeCarrizo citrangeOxidative stressActa Horticulturae
researchProduct

Hexanoic acid is a resistance inducer that protects tomato plants againstPseudomonas syringaeby priming the jasmonic acid and salicylic acid pathways

2012

Summary Hexanoic acid-induced resistance (Hx-IR) is effective against several pathogens in tomato plants. Our study of the mechanisms implicated in Hx-IR against Pseudomonas syringae pv. tomato DC3000 suggests that hexanoic acid (Hx) treatment counteracts the negative effect of coronatine (COR) and jasmonyl-isoleucine (JA-Ile) on the salicylic acid (SA) pathway. In Hx-treated plants, an increase in the expression of jasmonic acid carboxyl methyltransferase (JMT) and the SA marker genes PR1 and PR5 indicates a boost in this signalling pathway at the expense of a decrease in JA-Ile. Moreover, Hx treatment potentiates 12-oxo-phytodienoic acid accumulation, which suggests that this molecule mig…

Hexanoic acidMethyl jasmonateEffectorJasmonic acidfungifood and beveragesSoil ScienceCoronatinePlant ScienceBiologychemistry.chemical_compoundchemistryBiochemistryPseudomonas syringaeAgronomy and Crop ScienceMolecular BiologySalicylic acidSystemic acquired resistanceMolecular Plant Pathology
researchProduct

An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identi…

2015

n this study, we have used untargeted global metabolomic analysis to determine and compare the chemi-cal nature of the metabolites altered during the infection of tomato plants (cv. Ailsa Craig) with Botry-tis cinerea (Bot)orPseudomonas syringae pv. tomato DC3000 (Pst), pathogens that have different invasionmechanisms and lifestyles. We also obtained the metabolome of tomato plants primed using the naturalresistance inducer hexanoic acid and then infected with these pathogens. By contrasting the metabolomicprofiles of infected, primed, and primed + infected plants, we determined not only the processes or compo-nents related directly to plant defense responses, but also inferred the metabolic…

MetabolitePseudomonas syringaePlant ScienceBiologyinduced resistancechemistry.chemical_compoundBotrytis cinereaMetabolomicsSolanum lycopersicumGene Expression Regulation PlantBotanyGeneticsMetabolomePseudomonas syringaePlant defense against herbivoryMetabolomicsSecondary metabolismprimingDisease ResistanceHexanoic acidfungiTryptophanfood and beveragesCell Biologybiology.organism_classificationBiochemistrychemistrytomatoplantsBotrytisSolanumhexanoic acidThe Plant journal : for cell and molecular biology
researchProduct