0000000000297099
AUTHOR
J.-p. Dufour
Electronic momentum distribution in the one-dimensional extended Hubbard model: determinantal Monte Carlo study
Abstract The effect of electron–electron (e–e) interaction on trans -polyacetylene ( t -PA) properties is investigated within the framework of an extended Hubbard model in one dimension. For numerical calculation, we use the determinantal version of quantum Monte Carlo approach, which provides a breakthrough to simulate statistical fluctuations in the systems with many degrees of freedom, in order to obtain mean values for observables of physical interest. This allows one to analyze the discrete system of fermions without encountering the numerical instabilities that generally occur from the original problem involving anticommuting fermion operators. We calculate the electronic momentum dis…
The behavior of correlation functions in trans-polyacetylene: quantum Monte Carlo study
We present results of a quantum Monte Carlo simulation of the one-dimensional half-filled Hubbard model to study different correlation functions in the trans-polyacetylene (t-PA) polymer. Magnetic structure of the model in t-PA is studied for a different range values of the Hubbard repulsion interactions, U and V ,w here U 4t , with V ∈[ U/2 ,U ] (t is the hopping matrix elements). In this work, we investigate the behavior of the magnetic correlation functions for different phases transitions between different ordering (antiferromagnetic and ferromagnetic) by varying the nearest-neighbor interactions U and V between different atomic sites. Our results indicate that there is a presence of a …
Attempts to Produce Superheavy Elements by Fusion ofCa48withCm248in the Bombarding Energy Range of 4.5-5.2 MeV/u
A search for superheavy elements was made in bombardments of $^{248}\mathrm{Cm}$ with $^{48}\mathrm{Ca}$ ions performed at projectile energies close to the interaction barrier in order to keep the excitation energy of the compound nucleus $Z=116$, $A=296$ as low as possible. No evidence for superheavy nuclei was obtained in a half-life region from 1 \ensuremath{\mu}s to 10 yr with a production cross section greater than ${10}^{\ensuremath{-}34}$ to ${10}^{\ensuremath{-}35}$ ${\mathrm{cm}}^{2}$.