0000000000297872

AUTHOR

I. Savvidis

showing 8 related works from this author

Conceptual design of the International Axion Observatory (IAXO)

2014

The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $\times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{…

MICROPICPhysics - Instrumentation and DetectorsPhotonaxionsParameter space7. Clean energyHigh Energy Physics - ExperimentDark Matter detectors (WIMPs axions etc.)High Energy Physics - Experiment (hep-ex)Observatoryetc.)Micropattern gaseous detectors (MSGC GEM THGEM RETHGEM MHSP MICROPIC MICROMEGAS InGrid etc)Detectors and Experimental TechniquesInstrumentationMathematical PhysicsPhysicsGEMsolar [axion]Dark Matter Detectors (Wimps Axions etc.)MicroMegas detectorX-ray detectorsInstrumentation and Detectors (physics.ins-det)Dark Matter detectors (WIMPs axions etc.); Large detector systems for particle and astroparticle physics; Micropattern gaseous detectors (MSGC GEM THGEM RETHGEM MHSP MICROPIC MICROMEGAS InGrid etc); X-ray detectors; Instrumentation; Mathematical PhysicssolarobservatoryMICROMEGASMHSPaxion-like particlesproposed experimentaxions ; dark matter detectors ; x-ray detectors ; Micropattern gaseous detectors ; large detector systems for particle and astroparticle physicsMicromegasX-ray detectorParticle physicsoptics [X-ray]FOS: Physical sciencesSuperconducting magnetMicropattern gaseous detectors (MSGCddc:610Axionactivity reportDark Matter detectors (WIMPssuperconductivity [magnet]etc)HelioscopeLarge detector systems for particle and astroparticle physicssensitivityInGridRETHGEMOrders of magnitude (time)axionLarge detector systems for particle and astroparticle physicTHGEMMicropattern Gaseous Detectors (MSGC Gem THGEM Rethgem MHSP Micropic Micromegas In Grid; etc)
researchProduct

Neutron cross section measurements at n_TOF for ADS related estudies

2005

A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main res…

HistoryAstrofísica nuclearNeutron cross sectionsNuclear transmutationNuclear engineeringNuclear TheoryNuclear physicsNeutrons -- SeccionsEducationNuclear physicsRadiació ionitzant -- Mesures de seguretatRadioactive wastesNeutron cross sectionNuclear astrophysicsNeutronNuclear ExperimentPhysicsLarge Hadron Collider:Física [Àrees temàtiques de la UPC]Time-of-flight mass spectrometryRadioactive wasteNeutron radiationWaste disposalResidus radioactiusComputer Science ApplicationsShielding (Radiation)Physics::Accelerator PhysicsNuclear astrophysicsFísica nuclearNucleon
researchProduct

The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO)

2015

Çetin, Serkant Ali (Dogus Author) -- Conference full title: 13th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2013; Asilomar Conference Grounds Monterey Peninsula; United States; 8 September 2013 through 13 September 2013. The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 - 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling gaγ down to a few ×10-12 GeV-1 for a wide range of axion masses up to ∼ 0.25 eV. This is an improvement over the currently best …

QCD axionParticle physicsPhysics::Instrumentation and DetectorsDark matterPhysics and Astronomy(all)01 natural sciences7. Clean energymagnetic helioscopeHigh Energy Physics::TheoryQCD axionsAstroparticle PhysicsAxionObservatory0103 physical sciencesDark matterQCD axions; magnetic helioscope; dark matterDark Matterddc:530Detectors and Experimental Techniques010306 general physicsAxionAstroparticle physicsPhysicsHelioscope010308 nuclear & particles physicsAxion Dark Matter ExperimentHigh Energy Physics::PhenomenologyStrong CP problemIAXOStrong CP ProblemALPStrong CP problemAstroparticle physicsCERN Axion Solar TelescopeParticle Physics - ExperimentHelioscopesPhysics Procedia
researchProduct

Future axion searches with the International Axion Observatory (IAXO)

2013

Çetin, Serkant Ali (Dogus Author) -- Conference full title: 6th Symposium on Large TPCs for Low Energy Rare Event Detection; Paris; France; 17 December 2012 through 19 December 2012. The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of gaγ ∼ few × 10-12 GeV-1, i.e. 1-1.5 orders of magnitude beyond the one achieved by CAST, currently the most sensitive axion helioscope. The main elements of IAXO are an increased magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include …

PhysicsHistoryParticle physicssolar axionOrders of Magnitude010308 nuclear & particles physicsRare event detectionSingle photon detectorsLow Background Detectors01 natural sciencesdark matterWhite DwarfsComputer Science ApplicationsEducationLow energyObservatory0103 physical sciencessolar axions; dark matter; Single photon detectorssolar axionsddc:530X-ray Focusing Optics010306 general physicsAxion
researchProduct

Deep sea tests of a prototype of the KM3NeT digital optical module

2014

SIRE(opens in a new window)|View at Publisher| Export | Download | Add to List | More... European Physical Journal C Volume 74, Issue 9, 1 September 2014, 8p Deep sea tests of a prototype of the KM3NeT digital optical module: KM3NeT Collaboration (Article) Adrián-Martínez, S.a, Ageron, M.b, Aharonian, F.c, Aiello, S.d, Albert, A.e, Ameli, F.f, Anassontzis, E.G.g, Anghinolfi, M.h, Anton, G.i, Anvar, S.j, Ardid, M.a, de Asmundis, R.k, Balasi, K.l, Band, H.m, Barbarino, G.kn, Barbarito, E.o, Barbato, F.kn, Baret, B.p, Baron, S.p, Belias, A.lq, Berbee, E.m, van den Berg, A.M.r, Berkien, A.m, Bertin, V.b, Beurthey, S.b, van Beveren, V.m, Beverini, N.st, Biagi, S.uv, Bianucci, S.t, Billault, M.b,…

KM3NeT; digital optical modulePhysics - Instrumentation and Detectors[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics and Astronomy (miscellaneous)TELESCOPEPhysics::Instrumentation and Detectorsdigital optical moduleFOS: Physical sciencesNeutrino Telescopesneutrino astrophysics; Cherenkov detector; Neutrino TelescopesKM3NeT; Cherenkov; UnderwaterDESIGNCherenkov[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentation and Methods for Astrophysics (astro-ph.IM)KM3NeTEngineering (miscellaneous)Astrophysics::Instrumentation and Methods for Astrophysicsneutrino telescopeDATA-ACQUISITIONInstrumentation and Detectors (physics.ins-det)READOUTneutrino astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]NEUTRINOSUnderwaterAstrophysics - Instrumentation and Methods for AstrophysicsSYSTEMCherenkov detector
researchProduct

Neutron measurements for advanced nuclear systems: The n_TOF project at CERN

2012

A few years ago, the neutron time-of-flight facility n_TOF was built at CERN to address some of the urgent needs of high-accuracy nuclear data for Accelerator Driven Systems and other advanced nuclear energy systems, as well as for nuclear astrophysics and fundamental nuclear physics. Thanks to the characteristics of the neutron beam, and to state-of-the-art detection and acquisition systems, high quality neutron cross-section data have been obtained for a variety of isotopes, many of which radioactive. Following an important upgrade of the spallation target and of the experimental area, a new measurement campaign has started last year. After a brief review of the most important results obt…

Nuclear and High Energy PhysicsAstrofísica nuclearNuclear engineeringNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physics0103 physical sciencesNuclear astrophysicsSpallationNeutron010306 general physicsNuclear ExperimentInstrumentationPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsNuclear fissionNuclear dataNeutron radiationNuclear technologyEnergia nuclearPhysics::Accelerator PhysicsFísica nuclearSpallation Neutron Source
researchProduct

IAXO - The International Axion Observatory

2013

The International Axion Observatory (IAXO) is a next generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 10^{-12} GeV^{-1}, i.e. 1-1.5 orders of magnitude beyond sensitivities achieved by the currently most sensitive axion helioscope, the CERN Axion Solar Telescope (CAST). Crucial factors in improving the sensitivity for IAXO are the increase of the magnetic field volume together with the extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested at CAST. Electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) along…

High Energy Physics::TheoryHigh Energy Physics - Experiment (hep-ex)Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsHigh Energy Physics::PhenomenologyFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Detectors and Experimental TechniquesHigh Energy Physics - Experiment
researchProduct

Deep sea tests of a prototype of the KM3NeT digital optical module: KM3NeT Collaboration

2014

The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40…

PhysicsPhotomultiplierPhotonPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsbusiness.industryPhysics::Instrumentation and DetectorsDetectorAstrophysics::Instrumentation and Methods for Astrophysics01 natural sciencesSignalPhotocathodeOpticsKM3NeT0103 physical sciences14. Life underwaterSensitivity (control systems)010306 general physicsbusinessEngineering (miscellaneous); Physics and Astronomy (miscellaneous)Engineering (miscellaneous)Cherenkov radiation
researchProduct