0000000000298286

AUTHOR

Tomoyuki Tanaka

showing 4 related works from this author

The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

2019

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The chan…

DYNAMICSQH301-705.5ScienceEXCITED-STATEDIFFRACTION010402 general chemistryPhotosynthesisphytochromes01 natural sciencesCofactor03 medical and health scienceschemistry.chemical_compoundDeinococcus radioduransPROTON-TRANSFERREVEALSSFXCRYSTAL-STRUCTUREBiology (General)Bilin030304 developmental biologyISOMERIZATION0303 health sciencesbiologyPhytochromeD-RINGChemistryCRYSTALLOGRAPHYinitial photoresponsQRChromophore0104 chemical sciencesPhotoexcitationFemtosecondbiology.proteinBiophysics1182 Biochemistry cell and molecular biologyMedicine3111 BiomedicinevalokemiaproteiinitSignal transductionröntgenkristallografia
researchProduct

Author response: The primary structural photoresponse of phytochrome proteins captured by a femtosecond X-ray laser

2020

X-ray laserPrimary (chemistry)Materials sciencePhytochromebusiness.industryFemtosecondOptoelectronicsbusiness
researchProduct

Gamma Ray Spectra from Thermal Neutron Capture on Gadolinium-155 and Natural Gadolinium

2019

Natural gadolinium is widely used for its excellent thermal neutron capture cross section, because of its two major isotopes: $^{\rm 155}$Gd and $^{\rm 157}$Gd. We measured the $\gamma$-ray spectra produced from the thermal neutron capture on targets comprising a natural gadolinium film and enriched $^{\rm 155}$Gd (in Gd$_{2}$O$_{3}$ powder) in the energy range from 0.11 MeV to 8.0 MeV, using the ANNRI germanium spectrometer at MLF, J-PARC. The freshly analysed data of the $^{\rm 155}$Gd(n, $\gamma$) reaction are used to improve our previously developed model (ANNRI-Gd model) for the $^{\rm 157}$Gd(n, $\gamma$) reaction, and its performance confirmed with the independent data from the $^{\r…

Physics - Instrumentation and DetectorsGadoliniumMonte Carlo methodAnalytical chemistryenergy spectrumGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciencesGermanium[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]n: thermal7. Clean energy01 natural sciencesSpectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)F20 Instrumentation and technique0103 physical sciencesH43 Software architectures[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)n: capture010306 general physicsNuclear ExperimentMonte CarloPhysicsD21 Models of nuclear reactionsIsotopeSpectrometer010308 nuclear & particles physicsJ-PARC LabGamma rayInstrumentation and Detectors (physics.ins-det)Gadolinium neutron capture gamma ray cascadeNeutron temperature3. Good healthparticle: interactionH20 Instrumentation for underground experimentsgermaniumF22 Neutrinos from supernova remnant and other astronomical objectsC42 Reactor experimentschemistrygamma rayC43 Underground experimentsspectrometergadoliniumperformance
researchProduct

Gamma Ray Spectrum from Thermal Neutron Capture on Gadolinium-157

2018

International audience; We have measured the |$\gamma$|-ray energy spectrum from the thermal neutron capture, |${}^{157}$|Gd|$(n,\gamma)$|⁠, on an enriched |$^{157}$|Gd target (Gd|$_{2}$|O|$_{3}$|⁠) in the energy range from 0.11 MeV up to about 8 MeV. The target was placed inside the germanium spectrometer of the ANNRI detector at J-PARC and exposed to a neutron beam from the Japan Spallation Neutron Source (JSNS). Radioactive sources (⁠|$^{60}$|Co, |$^{137}$|Cs, and |$^{152}$|Eu) and the |$^{35}$|Cl(⁠|$n$|⁠,|$\gamma$|⁠) reaction were used to determine the spectrometer‘s detection efficiency for |$\gamma$| rays at energies from 0.3 to 8.5 MeV. Using a Geant4-based Monte Carlo simulation of …

PhotonPhysics - Instrumentation and DetectorsMonte Carlo methodGeneral Physics and Astronomy7. Clean energy01 natural sciencesnuclear reactionSpectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)H43 Software architectures[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]n: fissionNuclear Experiment (nucl-ex)n: captureNuclear ExperimentNuclear ExperimentPhysicsdensityJ-PARC LabphotonGamma rayInstrumentation and Detectors (physics.ins-det)Atomic physicsnumerical calculations: Monte CarloSpallation Neutron SourceNeutron captureAstrophysics::High Energy Astrophysical Phenomenaenergy spectrumchemistry.chemical_elementFOS: Physical sciencesGermanium[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]n: thermalF20 Instrumentation and technique0103 physical sciencesModels of nuclear reactions[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutron capture gamma ray cascade Models of nuclear reactions Neutrinos from supernova remnant010306 general physicsD21 Models of nuclear reactionsgamma ray cascadeSpectrometer010308 nuclear & particles physicsnucleusNeutron radiationH20 Instrumentation for underground experiments* Automatic Keywords *germaniumF22 Neutrinos from supernova remnant and other astronomical objectschemistryn: beamNeutrinos from supernova remnantefficiencygamma rayspectrometerC43 Underground experimentsgadolinium
researchProduct