0000000000299191
AUTHOR
Sophie Layé
Dietary prevention of visual function and cognitive decline by omega-3 polyunsaturated fatty acids in Senescence Accelerated Mouse P8 (SAM P8)
International audience; Purpose: : Neuronal tissues such as the brain and the retina contain elevated amounts of long-chain omega-3 polyunsaturated fatty acids (PUFAs) and particularly docosahexaenoic acid (DHA). DHA concentrations are known to decrease in the aging brain and are associated with cognitive decline. The senescence-accelerated mouse prone 8 (SAM P8) is a mouse model for aging that exhibits deficits in cognitive performances as well as alterations of retinal functionality (ARVO 2004 E-abstract 797). The aim of this study was to evaluate the effects of a dietary supplementation with DHA on mood, cognition and visual functionality of SAM P8 during aging. Methods: : SAM P8 mice we…
Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the developing brain
SUMMARYOmega-3 fatty acids (n-3 polyunsaturated fatty acids; n-3 PUFAs) are essential for the functional maturation of the brain. Westernization of dietary habits in both developed and developing countries is accompanied by a progressive reduction in dietary intake of n-3 PUFAs. Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental diseases in epidemiological studies, but the mechanisms by which a n-3 PUFA dietary imbalance affects CNS development are poorly understood. Active microglial engulfment of synaptic elements is an important process for normal brain development and altered synapse refinement is a hallmark of several neurodevelopmental disorders. Here, we identify …
Genetic variability in metabolic and behavioral responses to Western life style: analysis of the transcortin-deficient mouse after high fat diet and chronic stress
National audience
Impact of perinatal high fat diet on metabolic parameters, visual function and behaviour in adulthood
National audience
Causal Link between n-3 Polyunsaturated Fatty Acid Deficiency and Motivation Deficits
International audience; Reward-processing impairment is a common symptomatic dimension of several psychiatric disorders. However, whether the underlying pathological mechanisms are common is unknown. Herein, we asked if the decrease in the n-3 polyunsaturated fatty acid (PUFA) lipid species, consistently described in these pathologies, could underlie reward-processing deficits. We show that reduced n-3 PUFA biostatus in mice leads to selective motivational impairments. Electrophysiological recordings revealed increased collateral inhibition of dopamine D2 receptor-expressing medium spiny neurons (D2-MSNs) onto dopamine D1 receptor-expressing MSNs in the nucleus accumbens, a main brain regio…
Short-Term Long Chain Omega3 Diet Protects from Neuroinflammatory Processes and Memory Impairment in Aged Mice
Regular consumption of food enriched in omega3 polyunsaturated fatty acids (oméga3 PUFAs) has been shown to reduce risk of cognitive decline in elderly, and possibly development of Alzheimer's disease. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most likely active components of oméga3-rich PUFAs diets in the brain. We therefore hypothesized that exposing mice to a DHA and EPA enriched diet may reduce neuroinflammation and protect against memory impairment in aged mice. For this purpose, mice were exposed to a control diet throughout life and were further submitted to a diet enriched in EPA and DHA during 2 additional months. Cytokine expression together with a thoroug…
Modulation of brain PUFA content in different experimental models of mice.
International audience; The relative amounts of arachidonic acid (AA) and docosahexaenoic acid (DHA) govern the different functions of the brain. Their brain levels depend on structures considered, on fatty acid dietary supply and the age of animals. To have a better overview of the different models available in the literature we here compared the brain fatty acid composition in various mice models (C57BL/6J, CD1, Fat-1, SAMP8 mice) fed with different n-3 PUFA diets (deficient, balanced, enriched) in adults and aged animals. Our results demonstrated that brain AA and DHA content is 1) structure-dependent; 2) strain-specific; 3) differently affected by dietary approaches when compared to gen…
Perinatal high-fat diet increases hippocampal vulnerability to the adverse effects of subsequent high-fat feeding
Epidemiological observations report an increase in fat consumption associated with low intake of n-3 relative to n-6 polyunsaturated fatty acids (PUFAs) in women of childbearing age. However, the impact of these maternal feeding habits on cognitive function in the offspring is unknown. This study aims to investigate the impact of early exposure to a high-fat diet (HFD) with an unbalanced n-6/n-3 PUFAs ratio on hippocampal function in adult rats. Furthermore, we explored the effects of perinatal HFD combined with exposure to HFD after weaning. Dams were fed a control diet (C, 12% of energy from lipids, n-6/n-3 PUFAs ratio: 5) or HFD (HF, 39% of energy from lipids, n-6/n-3 PUFAs ratio: 39) th…
Nutritional omega-3 deficiency and emotional behaviors: a role of CB1R?
National audience