0000000000299512

AUTHOR

Andrzej Ptok

0000-0002-5566-2656

showing 6 related works from this author

Quantum engineering of Majorana quasiparticles in one-dimensional optical lattices

2017

We propose a feasible way of engineering Majorana-type quasiparticles in ultracold fermionic gases on a one-dimensional (1D) optical lattice. For this purpose, imbalanced ultracold atoms interacting by the spin-orbit coupling should be hybridized with a three-dimensional Bose-Einstein condensate (BEC) molecular cloud. By constraining the profile of an internal defect potential we show that the Majorana-type excitations can be created or annihilated. This process is modelled within the Bogoliubov-de Gennes approach. This study is relevant also to nanoscopic 1D superconductors where modification of the internal defect potential can be obtained by electrostatic means.

Condensed Matter::Quantum GasesPhysicsSuperconductivityOptical latticeCondensed matter physicsCondensed Matter::OtherScatteringCondensed Matter - SuperconductivityFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSuperconductivity (cond-mat.supr-con)Quantum technologyMAJORANACoupling (physics)Quantum Gases (cond-mat.quant-gas)Ultracold atom0103 physical sciencesQuasiparticleGeneral Materials ScienceCondensed Matter - Quantum Gases010306 general physics0210 nano-technologyJournal of Physics: Condensed Matter
researchProduct

Phase separations induced by a trapping potential in one-dimensional fermionic systems as a source of core-shell structures

2018

Ultracold fermionic gases in optical lattices give a great opportunity for creating different types of novel states. One of them is phase separation induced by a trapping potential between different types of superfluid phases. The core-shell structures, occurring in systems with a trapping potential, are a good example of such separations. The types and the sequences of phases which emerge in such structures can depend on spin-imbalance, shape of the trap and on-site interaction strength. In this work, we investigate the properties of such structures within an attractive Fermi gas loaded in the optical lattice, in the presence of the trapping potential and their relations to the phase diagr…

0301 basic medicineWork (thermodynamics)lcsh:MedicineFOS: Physical sciencesTrappingMolecular physicsArticleSuperconducting properties and materialsTrap (computing)Superfluidity03 medical and health sciences0302 clinical medicinePhase (matter)lcsh:ScienceUltracold gasesPhase diagramPhysicsCondensed Matter::Quantum GasesOptical latticeMultidisciplinarylcsh:R030104 developmental biologyQuantum Gases (cond-mat.quant-gas)lcsh:QCondensed Matter - Quantum GasesFermi gas030217 neurology & neurosurgery
researchProduct

Critical behaviour in one dimension: unconventional pairing, phase separation, BEC-BCS crossover and magnetic Lifshitz transition

2017

We study the superconducting properties of population-imbalanced ultracold Fermi mixtures in one-dimensional (1D) optical lattices that can be effectively described by the spin-imbalanced attractive Hubbard model (AHM) in the presence of a Zeeman magnetic field. We use the mean-field theory approach to obtain the ground state phase diagrams including some unconventional superconducting phases such as the Fulde--Ferrell--Larkin--Ovchinnikov (FFLO) phase, and the $\eta$ phase (an extremal case of the FFLO phase), both for the case of a fixed chemical potential and for a fixed number of particles. It allows to determine optimal regimes for the FFLO phase as well as $\eta$-pairing stability. We…

PhysicsSuperconductivityCondensed Matter::Quantum GasesZeeman effectCondensed matter physicsHubbard modelFOS: Physical sciencesCoupling (probability)01 natural sciences010305 fluids & plasmasMagnetic fieldsymbols.namesakeQuantum Gases (cond-mat.quant-gas)Quantum mechanicsPhase (matter)PairingCondensed Matter::Superconductivity0103 physical sciencessymbols010306 general physicsCondensed Matter - Quantum GasesPhase diagram
researchProduct

Magnetic Lifshitz transition and its consequences in multi-band iron-based superconductors

2017

In this paper we address Lifshitz transition induced by applied external magnetic field in a case of iron-based superconductors, in which a difference between the Fermi level and the edges of the bands is relatively small. We introduce and investigate a two-band model with intra-band pairing in the relevant parameters regime to address a generic behaviour of a system with hole-like and electron-like bands in external magnetic field. Our results show that two Lifshitz transitions can develop in analysed systems and the first one occurs in the superconducting phase and takes place at approximately constant magnetic field. The chosen sets of the model parameters can describe characteristic ban…

SuperconductivityPhysicsMultidisciplinaryStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsCondensed Matter - SuperconductivityFermi levelPhase (waves)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesArticleMagnetic fieldSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated Electronssymbols.namesakeIron basedPairing0103 physical sciencessymbols010306 general physics0210 nano-technologyConstant (mathematics)Electronic band structureScientific Reports
researchProduct

Reentrant Fulde-Ferrell-Larkin-Ovchinnikov superfluidity in the honeycomb lattice

2017

We study superconducting properties of population-imbalanced ultracold Fermi mixtures in the honeycomb lattice that can be effectively described by the spin-imbalanced attractive Hubbard model in the presence of a Zeeman magnetic field. We use the mean-field theory approach to obtain ground state phase diagrams including some unconventional superconducting phases such as the Fulde--Ferrell--Larkin--Ovchinnikov (FFLO) phase. We show that this phase is characterized by atypical behaviour of the Cooper pairs total momentum in the external magnetic field. We show that the momentum changes its value as well as direction with change of the system parameters. We discuss the influence of van Hove s…

Hubbard modelFOS: Physical sciences02 engineering and technology01 natural sciencesSuperconductivity (cond-mat.supr-con)SuperfluidityCondensed Matter - Strongly Correlated Electronssymbols.namesakeCondensed Matter::SuperconductivityLattice (order)0103 physical sciences010306 general physicsPhase diagramCondensed Matter::Quantum GasesSuperconductivityPhysicsZeeman effectStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsCondensed Matter - Superconductivity021001 nanoscience & nanotechnologyMagnetic fieldReentrancyQuantum Gases (cond-mat.quant-gas)symbolsCondensed Matter - Quantum Gases0210 nano-technologyPhysical Review A
researchProduct

Superfluidity of fermionic pairs in a harmonic trap. Comparative studies: Local Density Approximation and Bogoliubov-de Gennes solutions

2020

Abstract Experiments with ultracold gases on the lattice give the opportunity to realize superfluid fermionic mixtures in a trapping potential. The external trap modifies the chemical potential locally. Moreover, this trap also introduces non-homogeneity in the superconducting order parameter. There are, among other approaches, two methods which can be used to describe the system of two-component mixtures loaded into an optical lattice: the Local Density Approximation (LDA) and the self-consistent Bogoliubov–de Gennes equations. Here, we compare results obtained within these two methods. We conclude that the results can be distinguishable only in the case of a small value of the pairing int…

Condensed Matter::Quantum GasesPhysicsSuperfluiditySuperconductivityOptical latticeLattice (order)Quantum mechanicsPairingGeneral Physics and AstronomyTrappingLocal-density approximationJournal of Physics Communications
researchProduct