0000000000299652

AUTHOR

Stephen Hill

0000-0001-6742-3620

Enhancing coherence in molecular spin qubits via atomic clock transitions

Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest1,2. There are many competing candidates for qubits, including superconducting circuits3, quantum optical cavities4, ultracold atoms5 and spin qubits6,7,8, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction9. To minimize it, spins are typically diluted in a diamagnetic matrix. For…

research product

Single-crystal EPR spectroscopy of a Co(II) single-chain magnet

Abstract An electron paramagnetic resonance (EPR) study of a single crystal of Co II -based single-chain magnets (SCM) is presented. Discrete resonant absorptions are associated to the presence of magnetic domains within the chains of finite lengths determined by a competition between intra-chain exchange interactions and thermally excited single spin fluctuations. The results are interpreted as a transition from single spin dynamics at high temperature ( T  ∼20 K), associated to the Kramers doublet ground state of the individual Co II ions, to archetypical SCM dynamics at low temperatures, where intra-chain correlations form long magnetic domains, whose average length is imposed by the con…

research product

Ferromagnetic exchange in a twisted, oxime-bridged [mniii2] dimer

Journal article The dimeric complex [MnIII2(Naphth-sao)2(Naphth-saoH)2(MeOH)2][middle dot]4MeOH (1[middle dot]4MeOH), acts as a simple model complex with which to examine the magneto-structural relationship in polymetallic, oxime-bridged MnIII complexes. Dc magnetic susceptibility studies reveal that ferromagnetic exchange is mediated through the heavily twisted Mn-O-N-Mn moiety (J = +1.24 cm-1) with magnetisation measurements at low temperatures and high fields suggesting significant anisotropy. Simulations of high field, high frequency EPR data reveal a single ion anisotropy, D(MnIII) = -3.94 cm-1. Theoretical studies on simplified model complexes of 1 reveal that calculated values of the…

research product

Multi-frequency EPR studies of a mononuclear holmium single-molecule magnet based on the polyoxometalate [Ho(III)(W5O18)2]9-.

Continuous-wave, multi-frequency electron paramagnetic resonance (EPR) studies are reported for a series of single-crystal and powder samples containing different dilutions of a recently discovered mononuclear Ho(III) (4f(10)) single-molecule magnet (SMM) encapsulated in a highly symmetric polyoxometalate (POM) cage. The encapsulation offers the potential for applications in molecular spintronics devices, as it preserves the intrinsic properties of the nanomagnet outside of the crystal. A significant magnetic anisotropy arises due to a splitting of the Hund's coupled total angular momentum (J = L + S = 8) ground state in the POM ligand field. Thus, high-frequency (50.4 GHz) EPR studies reve…

research product

Electron-nuclear decoupling at a spin clock transition

The ability to design quantum systems that decouple from environmental noise sources is highly desirable for development of quantum technologies with optimal coherence. The chemical tunability of electronic states in magnetic molecules combined with advanced electron spin resonance techniques provides excellent opportunities to address this problem. Indeed, so-called clock transitions have been shown to protect molecular spin qubits from magnetic noise, giving rise to significantly enhanced coherence. Here we conduct a spectroscopic and computational investigation of this physics, focusing on the role of the nuclear bath. Away from the clock transition, linear coupling to the nuclear degree…

research product

Accidentally on purpose: construction of a ferromagnetic, oxime-based [MnIII2] dimer

The serendipitous self-assembly of the complex [Mn(III)(2)Zn(II)(2)(Ph-sao)(2)(Ph-saoH)(4)(hmp)(2)] (1),whose magnetic core consists solely of two symmetry equivalent Mn(iii) ions linked by two symmetry equivalent -N-O- moieties, provides a relatively simple model complex with which to study the magneto-structural relationship in oxime-bridged Mn(III) cluster compounds. Dc magnetic susceptibility measurements reveal ferromagnetic (J = +2.2 cm(-1)) exchange resulting in an S = 4 ground state. Magnetisation measurements performed at low temperatures and high fields reveal the presence of significant anisotropy, with ac measurements confirming slow relaxation of the magnetisation and Single-Mo…

research product

Optimal coupling of HoW$_{10}$ molecular magnets to superconducting circuits near spin clock transitions

A central goal in quantum technologies is to maximize $G$T$_{2}$, where $G$ stands for the coupling of a qubit to control and readout signals and T$_{2}$ is the qubit's coherence time. This is challenging, as increasing $G$ (e.g. by coupling the qubit more strongly to external stimuli) often leads to deleterious effects on T$_{2}$. Here, we study the coupling of pure and magnetically diluted crystals of HoW$_{10}$ magnetic clusters to microwave superconducting coplanar waveguides. Absorption lines give a broadband picture of the magnetic energy level scheme and, in particular, confirm the existence of level anticrossings at equidistant magnetic fields determined by the combination of crysta…

research product

Molecular spins for quantum computation

Spins in solids or in molecules possess discrete energy levels, and the associated quantum states can be tuned and coherently manipulated by means of external electromagnetic fields. Spins therefore provide one of the simplest platforms to encode a quantum bit (qubit), the elementary unit of future quantum computers. Performing any useful computation demands much more than realizing a robust qubit—one also needs a large number of qubits and a reliable manner with which to integrate them into a complex circuitry that can store and process information and implement quantum algorithms. This ‘scalability’ is arguably one of the challenges for which a chemistry-based bottom-up approach is best-s…

research product