0000000000300032

AUTHOR

Pérola Milman

showing 1 related works from this author

Continuous-Variable Instantaneous Quantum Computing is Hard to Sample

2017

Instantaneous quantum computing is a sub-universal quantum complexity class, whose circuits have proven to be hard to simulate classically in the Discrete-Variable (DV) realm. We extend this proof to the Continuous-Variable (CV) domain by using squeezed states and homodyne detection, and by exploring the properties of post-selected circuits. In order to treat post-selection in CVs we consider finitely-resolved homodyne detectors, corresponding to a realistic scheme based on discrete probability distributions of the measurement outcomes. The unavoidable errors stemming from the use of finitely squeezed states are suppressed through a qubit-into-oscillator GKP encoding of quantum information,…

PolynomialMathematical optimizationComputer scienceFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmas010309 opticsContinuous variableHomodyne detection[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Quantum mechanics0103 physical sciencesComplexity classQuantum phase estimation algorithmStatistical physicsQuantum information010306 general physicsQuantumQuantum computerPhysicsQuantum PhysicsQuantum PhysicsSample (graphics)PostselectionProbability distributionQuantum Physics (quant-ph)Physical Review Letters
researchProduct