0000000000300307

AUTHOR

Sylvain Crovisier

showing 5 related works from this author

IFS attractors and Cantor sets

2006

Abstract We build a metric space which is homeomorphic to a Cantor set but cannot be realized as the attractor of an iterated function system. We give also an example of a Cantor set K in R 3 such that every homeomorphism f of R 3 which preserves K coincides with the identity on K.

Cantor's theoremDiscrete mathematicsMathematics::Dynamical SystemsAntoine's necklaceCantor set[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]010102 general mathematicsMathematics::General TopologyCantor function01 natural sciences010101 applied mathematicsCombinatoricsNull setCantor setsymbols.namesakeMetric spaceAttractorsymbolsGeometry and Topology0101 mathematicsAntoine's necklaceCantor's diagonal argumentIterated function systemMathematicsTopology and its Applications
researchProduct

Tame dynamics and robust transitivity chain-recurrence classes versus homoclinic classes

2014

Transitive relationPure mathematicsChain (algebraic topology)Applied MathematicsGeneral MathematicsDynamics (mechanics)Homoclinic orbitAlgorithmMathematicsTransactions of the American Mathematical Society
researchProduct

Pseudo-rotations of the closed annulus : variation on a theorem of J. Kwapisz

2003

Consider a homeomorphism h of the closed annulus S^1*[0,1], isotopic to the identity, such that the rotation set of h is reduced to a single irrational number alpha (we say that h is an irrational pseudo-rotation). For every positive integer n, we prove that there exists a simple arc gamma joining one of the boundary component of the annulus to the other one, such that gamma is disjoint from its n first iterates under h. As a corollary, we obtain that the rigid rotation of angle alpha can be approximated by homeomorphisms conjugate to h. The first result stated above is an analog of a theorem of J. Kwapisz dealing with diffeomorphisms of the two-torus; we give some new, purely two-dimension…

Mathematics::Dynamical Systems[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]General Physics and AstronomyBoundary (topology)Dynamical Systems (math.DS)Disjoint sets01 natural sciences37E45 37E30CombinatoricsInteger0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsStatistical and Nonlinear PhysicsAnnulus (mathematics)TorusMathematics::Geometric TopologyHomeomorphismIterated function010307 mathematical physicsDiffeomorphism
researchProduct

Recurrence and genericity

2003

We prove a C^1-connecting lemma for pseudo-orbits of diffeomorphisms on compact manifolds. We explore some consequences for C^1-generic diffeomorphisms. For instance, C^1-generic conservative diffeomorphisms are transitive. Nous montrons un lemme de connexion C^1 pour les pseudo-orbites des diffeomorphismes des varietes compactes. Nous explorons alors les consequences pour les diffeomorphismes C^1-generiques. Par exemple, les diffeomorphismes conservatifs C^1-generiques sont transitifs.

Pure mathematicsMathematics::Dynamical SystemsRiemann manifold[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)01 natural sciences37C05 37C20FOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsDynamical system (definition)Mathematics::Symplectic GeometryMathematicsLemma (mathematics)Transitive relationRecurrence relationgeneric properties010102 general mathematicsMathematical analysissmooth dynamical systemsGeneral Medicine16. Peace & justicechain recurrence010101 applied mathematicsconnecting lemmaDiffeomorphism
researchProduct

The centralizer of a C1 generic diffeomorphism is trivial

2007

In this announcement, we describe the solution in the C1 topology to a question asked by S. Smale on the genericity of trivial centralizers: the set of diffeomorphisms of a compact connected manifold with trivial centralizer residual in Diff^1 but does not contain an open and dense subset.

Mathematics::Dynamical Systems[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]FOS: Mathematics[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Mathematics - Dynamical SystemsMathematics::Geometric TopologyMathematics::Symplectic Geometry
researchProduct