0000000000302668

AUTHOR

L. Bradley

showing 6 related works from this author

OMC: An Optical Monitoring Camera for INTEGRAL

2003

The Optical Monitoring Camera (OMC) will observe the optical emission from the prime targets of the gammaray instruments onboard the ESA mission INTEGRAL, with the support of the JEM-X monitor in the X-ray domain. This capability will provide invaluable diagnostic information on the nature and the physics of the sources over a broad wavelength range. Its main scientific objectives are: (1) to monitor the optical emission from the sources observed by the gamma- and X-ray instruments, measuring the time and intensity structure of the optical emission for comparison with variability at high energies, and (2) to provide the brightness and position of the optical counterpart of any gamma- or X-r…

PhotometersUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Astronomía ópticaSpace vehiclesPhotometricPhotometers ; Space vehicles ; Instruments ; Photometric ; StarsUNESCO::ASTRONOMÍA Y ASTROFÍSICAInstrumentsStars:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]:ASTRONOMÍA Y ASTROFÍSICA::Astronomía óptica [UNESCO]
researchProduct

On-Orbit Degradation of Solar Instruments

2013

International audience; We present the lessons learned about the degradation observed in several space solar missions, based on contributions at the Workshop about On-Orbit Degradation of Solar and Space Weather Instruments that took place at the Solar Terrestrial Centre of Excellence (Royal Observatory of Belgium) in Brussels on 3 May 2012. The aim of this workshop was to open discussions related to the degradation observed in Sun-observing instruments exposed to the effects of the space environment. This article summarizes the various lessons learned and offers recommendations to reduce or correct expected degradation with the goal of increasing the useful lifespan of future and ongoing s…

solar instruments[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]010504 meteorology & atmospheric sciencesFOS: Physical sciencesSolar missionSpace weatherSpace (commercial competition)7. Clean energy01 natural sciencesSpace explorationDegradationContaminationObservatory0103 physical sciencesAerospace engineeringInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesbusiness.industryAstronomy and Astrophysicscon- taminationcalibrationspace environment[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceOrbit (dynamics)Environmental scienceAstrophysics - Instrumentation and Methods for AstrophysicsbusinessSpace environmentDegradation (telecommunications)SOLAR PHYSICS
researchProduct

The Large Area Detector of LOFT: the Large Observatory for X-ray Timing

2014

LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m 2 -class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most o…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Observatories ; Sensors ; X-rays ; Equipment and services ; X-ray sourcesComputer scienceObservatoriesFOS: Physical sciencesX-ray sources01 natural sciences7. Clean energyX-rayLoftObservatoryRange (aeronautics)0103 physical sciencesX-raysElectronicTimingOptical and Magnetic MaterialsElectrical and Electronic Engineering010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Compact Objects; Timing; X-ray; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringRemote sensingMillisecondEquipment and servicesCompact Objects010308 nuclear & particles physicsLarge area detectorSensorsApplied MathematicsComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter Physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron starAstrophysics - Instrumentation and Methods for Astrophysicsastro-ph.IM
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

OMC: An Optical Monitoring Camera for INTEGRAL

2003

The Optical Monitoring Camera (OMC) will observe the optical emission from the prime targets of the gamma- ray instruments onboard the ESA mission INTEGRAL, with the support of the JEM-X monitor in the X-ray domain. This capability will provide invaluable diagnostic information on the nature and the physics of the sources over a broad wavelength range. Its main scientific objectives are: (1) to monitor the optical emission from the sources observed by the gamma- and X-ray instruments, measuring the time and intensity structure of the optical emission for comparison with variability at high energies, and (2) to provide the brightness and position of the optical counterpart of any gamma- or X…

PhysicsBrightnessPixelAperturebusiness.industryAstronomy and AstrophysicsField of viewPhotometerLarge formatAstrophysicslaw.inventionOpticsSpace and Planetary SciencelawMagnitude (astronomy)Transient (oscillation)businessRemote sensingAstronomy & Astrophysics
researchProduct

OMC: An Optical Monitoring Camera for INTEGRAL - Instrument description and performance

2003

The Optical Monitoring Camera (OMC) will observe the optical emission from the prime targets of the gammaray instruments onboard the ESA mission INTEGRAL, with the support of the JEM-X monitor in the X-ray domain. This capability will provide invaluable diagnostic information on the nature and the physics of the sources over a broad wavelength range. Its main scientific objectives are: ( 1) to monitor the optical emission from the sources observed by the gamma- and X-ray instruments, measuring the time and intensity structure of the optical emission for comparison with variability at high energies, and ( 2) to provide the brightness and position of the optical counterpart of any gamma- or X…

Physical chemical mathematical & earth Sciencesstars : variables : generalPhysique chimie mathématiques & sciences de la terreEarth sciences & physical geographyinstrumentation : photometerstechniques : photometricspace vehicles : instrumentsSciences de la terre & géographie physique
researchProduct