0000000000303599

AUTHOR

Pawel Jewula

showing 16 related works from this author

A 4-tert-butylcalix[4]arene tetrahydroxamate podand based on the 1-oxypiperidine-2-one (1,2-PIPO−) chelate. Self-assembly into a supramolecular ionop…

2014

An octadentate tetrahydroxamic calix[4]arene podand incorporating 1-hydroxypiperidine-2-one (1,2-PIPOH) binding units has been designed as a specific chelator for tetravalent metal cations like Zr4+ or Hf4+. This receptor, which can be considered as the first ever abiotic ligand possessing only cyclic six-membered hydroxamate groups, has been synthesized and characterized in its tetraprotonated form (1H4). Contrary to expectation, however, this new chelator did not form a 1 : 1 complex upon reaction with M(acac)4 (M = Zr and Hf; acac = acetylacetonate), but rather self-assembled into a dimeric species of 2 : 2 stoichiometry. The latter could be characterized in solution by mass spectrometry…

ChemistryLigandStereochemistryGeneral Chemical EngineeringSupramolecular chemistryIonophoreGeneral ChemistryNuclear magnetic resonance spectroscopyAdductMetalvisual_artPolymer chemistryvisual_art.visual_art_mediumChelationStoichiometryRSC Adv.
researchProduct

Effects of preorganization in the chelation of UO22+ by hydroxamate ligands: cyclic PIPO– vs linear NMA–

2018

International audience; Many siderophores incorporate as bidentate chelating subunits linear and more seldomly cyclic hydroxamate groups. In this work, a comparative study of the uranyl binding properties in aqueous solution of two monohydroxamic acids, the prototypical linear N-methylacetohydroxamic acid (NMAH) and the cyclic analog 1-hydroxypiperidine-2-one (PIPOH), has been carried out. The complex [UO2(PIPO)(2)(H2O)] crystallized from slightly acidic water solutions (pH < 5), and its molecular structure was determined by X-ray diffraction. The uranyl speciation in the presence of both ligands has been thoroughly investigated in a 0.1 M KNO3 medium at 298.2 K by the combined use of four …

DenticitySpeciation010402 general chemistry010403 inorganic & nuclear chemistry01 natural sciencesCatalysisMetalchemistry.chemical_compounduranylMaterials Chemistry[CHIM.CRIS]Chemical Sciences/CristallographyMoleculeChelation[CHIM.COOR]Chemical Sciences/Coordination chemistry[PHYS]Physics [physics]Aqueous solutionLigandChemistryN-methylacetohydroxamic acidGeneral ChemistryUranyl0104 chemical sciencesCrystallographyStability constants of complexesvisual_artSolution thermodynamicscyclic hydroxamic acidvisual_art.visual_art_medium[CHIM.RADIO]Chemical Sciences/Radiochemistry
researchProduct

Synthesis and Structural Study of Tetravalent (Zr 4+ , Hf 4+ , Ce 4+ , Th 4+ , U 4+ ) Metal Complexes with Cyclic Hydroxamic Acids

2015

Six- and seven-membered cyclic hydroxamic acids, such as 1-hydroxypiperidine-2-one (1H, 1,2-PIPOH) and 1-hydroxyazepan-2-one (2H), have recently been identified in some mixed siderophores as one of their three chelating subunits. Compared to their ubiquitous noncyclic counterparts, cyclic hydroxamates are preorganized for metal binding. Surprisingly, the coordination chemistry of these bidentate, monoanionic ligands remains virtually unknown, even in the case of iron(III). We report herein the first structural study of the complexes of 1– and of 6–, an unsaturated seven-membered ring analog of 2–, with tetravalent cations of transition metals (zirconium and hafnium), lanthanide (cerium), an…

chemistry.chemical_classificationLanthanideSquare antiprismatic molecular geometryDenticity010405 organic chemistryStereochemistrychemistry.chemical_element010402 general chemistry01 natural sciences0104 chemical sciences3. Good healthCoordination complexInorganic ChemistryMetalCrystallographyCeriumchemistryTransition metalvisual_artvisual_art.visual_art_mediumChelationEuropean Journal of Inorganic Chemistry
researchProduct

Designing Silylatedl-Amino Acids using a Wittig Strategy: Synthesis of Peptide Derivatives and18F-Labelling

2017

An efficient semisynthesis of silylated l-amino acids by reaction of silylated benzaldehydes with a phosphonium l-amino acid used as a Wittig reagent is described. The efficiency of the silylated l-amino acids in peptide synthesis was investigated by coupling both the carboxylic acid and the amino moiety with l-alanine and phenylalanine derivatives, respectively. The silylated derivatives were treated with KF or tetrabutylammonium fluoride to give the corresponding fluorosilyl derivatives without racemization. The hydrolysis of the fluorosilylated derivatives in phosphate buffer at pH 7.2 was checked. Finally, the 18F-labelling of di-tert-butylsilylated saturated and unsaturated dipeptides …

chemistry.chemical_classification010405 organic chemistryCarboxylic acidOrganic Chemistry010402 general chemistry01 natural sciencesSemisynthesis0104 chemical sciencesAmino acidHydrolysischemistry.chemical_compoundchemistryWittig reactionPeptide synthesisOrganic chemistryPhosphoniumPhysical and Theoretical ChemistryRacemizationEuropean Journal of Organic Chemistry
researchProduct

CCDC 908612: Experimental Crystal Structure Determination

2015

Related Article: Pawel Jewula, Jean-Claude Berthet, Jean-Claude Chambron, Yoann Rousselin, Pierre Thuéry, Michel Meyer|2015|Eur.J.Inorg.Chem.||1529|doi:10.1002/ejic.201403206

Space GroupCrystallography1-hydroxypiperidin-2-one monohydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 908613: Experimental Crystal Structure Determination

2015

Related Article: Pawel Jewula, Jean-Claude Berthet, Jean-Claude Chambron, Yoann Rousselin, Pierre Thuéry, Michel Meyer|2015|Eur.J.Inorg.Chem.||1529|doi:10.1002/ejic.201403206

Space GroupCrystallography1-hydroxyazepan-2-oneCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 938729: Experimental Crystal Structure Determination

2015

Related Article: Pawel Jewula, Jean-Claude Berthet, Jean-Claude Chambron, Yoann Rousselin, Pierre Thuéry, Michel Meyer|2015|Eur.J.Inorg.Chem.||1529|doi:10.1002/ejic.201403206

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrakis(2-oxopiperidin-1-olato)uranium pyridine solvateExperimental 3D Coordinates
researchProduct

CCDC 983068: Experimental Crystal Structure Determination

2014

Related Article: Pawel Jewula, Jean-Claude Chambron, Marie-José Penouilh, Yoann Rousselin, Michel Meyer|2014|RSC Advances|4|22743|doi:10.1039/C4RA00977K

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters5111723-Tetra-t-butyl-25262728-((2-((1-(benzyloxy)-2-oxopiperidin-3-yl)amino)-2-oxoethyl)oxy)calix(4)arene methanol solvate hydrateExperimental 3D Coordinates
researchProduct

CCDC 937567: Experimental Crystal Structure Determination

2015

Related Article: Pawel Jewula, Jean-Claude Berthet, Jean-Claude Chambron, Yoann Rousselin, Pierre Thuéry, Michel Meyer|2015|Eur.J.Inorg.Chem.||1529|doi:10.1002/ejic.201403206

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersN-(trityloxy)pent-4-enamideExperimental 3D Coordinates
researchProduct

CCDC 937568: Experimental Crystal Structure Determination

2015

Related Article: Pawel Jewula, Jean-Claude Berthet, Jean-Claude Chambron, Yoann Rousselin, Pierre Thuéry, Michel Meyer|2015|Eur.J.Inorg.Chem.||1529|doi:10.1002/ejic.201403206

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersN-allyl-N-(trityloxy)pent-4-enamideExperimental 3D Coordinates
researchProduct

CCDC 908614: Experimental Crystal Structure Determination

2015

Related Article: Pawel Jewula, Jean-Claude Berthet, Jean-Claude Chambron, Yoann Rousselin, Pierre Thuéry, Michel Meyer|2015|Eur.J.Inorg.Chem.||1529|doi:10.1002/ejic.201403206

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates1-hydroxy-1347-tetrahydro-2H-azepin-2-one
researchProduct

CCDC 1579042: Experimental Crystal Structure Determination

2018

Related Article: Alejandra Sornosa-Ten, Pawel Jewula, Tamas Fodor, Stéphane Brandès, Vladimir Sladkov, Yoann Rousselin, Christine Stern, Jean-Claude Chambron, Michel Meyer|2018|New J.Chem.|42|7765|doi:10.1039/C8NJ00166A

Space GroupCrystallographyaqua-bis[1-oxypiperidin-2-one]-dioxo-uraniumCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 908617: Experimental Crystal Structure Determination

2015

Related Article: Pawel Jewula, Jean-Claude Berthet, Jean-Claude Chambron, Yoann Rousselin, Pierre Thuéry, Michel Meyer|2015|Eur.J.Inorg.Chem.||1529|doi:10.1002/ejic.201403206

Space GroupCrystallographyCrystal SystemCrystal Structuretetrakis(1-(oxy)-1347-tetrahydro-2H-azepin-2-one)-zirconium dichloromethane solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 937569: Experimental Crystal Structure Determination

2015

Related Article: Pawel Jewula, Jean-Claude Berthet, Jean-Claude Chambron, Yoann Rousselin, Pierre Thuéry, Michel Meyer|2015|Eur.J.Inorg.Chem.||1529|doi:10.1002/ejic.201403206

Space GroupCrystallographyCrystal System1-(trityloxy)-1347-tetrahydro-2H-azepin-2-oneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 908616: Experimental Crystal Structure Determination

2015

Related Article: Pawel Jewula, Jean-Claude Berthet, Jean-Claude Chambron, Yoann Rousselin, Pierre Thuéry, Michel Meyer|2015|Eur.J.Inorg.Chem.||1529|doi:10.1002/ejic.201403206

Space GroupCrystallographytetrakis(1-(oxy)piperidin-2-one)-hafnium(iv) dichloromethane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 908615: Experimental Crystal Structure Determination

2015

Related Article: Pawel Jewula, Jean-Claude Berthet, Jean-Claude Chambron, Yoann Rousselin, Pierre Thuéry, Michel Meyer|2015|Eur.J.Inorg.Chem.||1529|doi:10.1002/ejic.201403206

tetrakis(1-(oxy)piperidin-2-one)-zirconium dichloromethane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct