0000000000304945

AUTHOR

Tekla Tammelin

showing 2 related works from this author

Cellulose-inorganic hybrids of strongly reduced thermal conductivity

2022

Abstract The employment of atomic layer deposition and spin coating techniques for preparing inorganic-organic hybrid multilayer structures of alternating ZnO-CNC layers was explored in this study. Helium ion microscopy and X-ray reflectivity showed the superlattice formation for the nanolaminate structures and atomic force microscopy established the efficient control of the CNCs surface coverage on the Al-doped ΖnO by manipulating the concentration of the spin coating solution. Thickness characterization of the hybrid structures was performed via both ellipsometry and X-ray reflectivity and the thermal conductivity was examined by time domain thermoreflectance technique. It appears that ev…

Materials scienceSURFACEPolymers and Plastics116 Chemical sciencesHybridsFILMSchemistry.chemical_compoundThermal conductivitysinkkioksidiZinc oxideCelluloseZINC-OXIDElämmöneristysHybridCellulose nanocrystalsAluminum dopingatomikerroskasvatusDEGRADATIONNANOCOMPOSITESNANOCRYSTALSYIELDChemical engineeringchemistryThermal conductivitylämmön johtuminenNANOCELLULOSEnanoselluloosaohutkalvotCellulose
researchProduct

Low-temperature atomic layer deposition of SiO2/Al2O3 multilayer structures constructed on self-standing films of cellulose nanofibrils

2018

In this paper, we have optimized a low-temperature atomic layer deposition (ALD) of SiO 2 using AP-LTO® 330 and ozone (O 3 ) as precursors, and demonstrated its suitability to surface-modify temperature-sensitive bio-based films of cellulose nanofibrils (CNFs). The lowest temperature for the thermal ALD process was 80°C when the silicon precursor residence time was increased by the stop-flow mode. The SiO 2 film deposition rate was dependent on the temperature varying within 1.5–2.2 Å cycle −1 in the temperature range of 80–350°C, respectively. The low-temperature SiO 2 process that resulted was combined with the conventional trimethyl aluminium + H 2 O process in order to prepare thin mul…

Water sensitivityMaterials scienceDiffusion barrierSiliconGeneral Mathematicsta221General Physics and Astronomychemistry.chemical_element02 engineering and technology01 natural sciencesOxygenAtomic layer depositionchemistry.chemical_compoundnanorakenteetHybrid multilayersSiO0103 physical sciencesCelluloseta216diffusion barrierta218low-temperature atomic layer depositionDiffusion barrierLow-temperature atomic layer deposition010302 applied physicsta214ta114water sensitivityta111General Engineeringcellulose nanofibrilsAtmospheric temperature range021001 nanoscience & nanotechnologyhybrid multilayerschemistryChemical engineeringCellulose nanofibrilsohutkalvotSiO20210 nano-technologyLayer (electronics)Water vaporPhilosophical Transactions of the Royal Society A : Mathematical Physical and Engineering Sciences
researchProduct