0000000000305837

AUTHOR

Arja Pasternack

0000-0002-6088-4245

Myostatin/activin blocking combined with exercise reconditions skeletal muscle expression profile of mdx mice

Duchenne Muscular Dystrophy is characterized by muscle wasting and decreased aerobic metabolism. Exercise and blocking of myostatin/activin signaling may independently or combined counteract muscle wasting and dystrophies. The effects of myostatin/activin blocking using soluble activin receptor-Fc (sActRIIB-Fc) administration and wheel running were tested alone or in combination for seven weeks in dystrophic mdx mice. Expression microarray analysis revealed decreased aerobic metabolism in the gastrocnemius muscle of mdx mice compared to healthy mice. This was not due to reduced home-cage physical activity, and was further downregulated upon sActRIIB-Fc treatment in enlarged muscles. However…

research product

Upregulation of activin-B and follistatin in pulmonary fibrosis: a translational study using human biopsies and a specific inhibitor in mouse fibrosis models

Background: Activins are members of the TGF-ß superfamily of growth factors. First, we identified by expression array screening that activin-B and follistatin are upregulated in human idiopathic pulmonary fibrosis (IPF). Next, we wanted to clarify their specific role in lung fibrosis formation. Methods: We used specific antibodies for activin-A and -B subunits and follistatin to measure and localize their levels in idiopathic pulmonary fibrosis and control lung biopsies. To inhibit activin signaling, we used soluble activin type IIB receptor fused to the Fc portion of human IgG1 (sActRIIB-Fc) in two different mouse models of pulmonary fibrosis. Results: Activin-B and follistatin mRNA levels…

research product

Combined effect of AAV-U7-induced dystrophin exon skipping and soluble activin Type IIB receptor in mdx mice.

Adeno-associated virus (AAV)-U7-mediated skipping of dystrophin-exon-23 restores dystrophin expression and muscle function in the mdx mouse model of Duchenne muscular dystrophy. Soluble activin receptor IIB (sActRIIB-Fc) inhibits signaling of myostatin and homologous molecules and increases muscle mass and function of wild-type and mdx mice. We hypothesized that combined treatment with AAV-U7 and sActRIIB-Fc may synergistically improve mdx muscle function. Bioactivity of sActRIIB-Fc on skeletal muscle was first demonstrated in wild-type mice. In mdx mice we show that AAV-U7-mediated dystrophin restoration improved specific muscle force and resistance to eccentric contractions when applied a…

research product

Treatment with soluble activin type IIB-receptor improves bone mass and strength in a mouse model of Duchenne muscular dystrophy

Background: Inhibition of activin/myostatin pathway has emerged as a novel approach to increase muscle mass and bone strength. Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that leads to progressive muscle degeneration and also high incidence of fractures. The aim of our study was to test whether inhibition of activin receptor IIB ligands with or without exercise could improve bone strength in the mdx mouse model for DMD. Methods: Thirty-two mdx mice were divided to running and non-running groups and to receive either PBS control or soluble activin type IIB-receptor (ActRIIB-Fc) once weekly for 7 weeks. Results: Treatment of mdx mice with ActRIIB-Fc resulted in significantly…

research product

Activin Receptor Ligand Blocking and Cancer Have Distinct Effects on Protein and Redox Homeostasis in Skeletal Muscle and Liver

Muscle wasting in cancer cachexia can be alleviated by blocking activin receptor type 2 (ACVR2) ligands through changes in protein synthesis/degradation. These changes in cellular and protein metabolism may alter protein homeostasis. First, we elucidated the acute (1–2 days) and 2-week effects of blocking ACVR2 ligands by soluble activin receptor 2B (sACVR2B-Fc) on unfolded protein response (UPR), heat shock proteins (HSPs) and redox balance in a healthy mouse skeletal muscle. Second, we examined UPR, autophagy and redox balance with or without sACVR2B-Fc administration in muscle and liver of C26 tumor-bearing mice. The indicators of UPR and HSPs were not altered 1–2 days after a single sAC…

research product

Systemic blockade of ACVR2B ligands attenuates muscle wasting in ischemic heart failure without compromising cardiac function

Signaling through activin receptors regulates skeletal muscle mass and activin receptor 2B (ACVR2B) ligands are also suggested to participate in myocardial infarction (MI) pathology in the heart. In this study, we determined the effect of systemic blockade of ACVR2B ligands on cardiac function in experimental MI, and defined its efficacy to revert muscle wasting in ischemic heart failure (HF). Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) to study its effect on post-MI cardiac remodeling and on later HF. Cardiac function was determined with echocardiography, and myocardium analyzed with histological and biochemical methods for hypertrophy and fibrosis. Pharmacological blo…

research product

Blocking of myostatin and activins increase muscle protein synthesis and mTORC1 signaling but decreases capillary density

research product

Systemic blockade of ACVR2B ligands protects myocardium from acute ischemia-reperfusion injury

Activin A and myostatin, members of the transforming growth factor (TGF)-β superfamily of secreted factors, are potent negative regulators of muscle growth, but their contribution to myocardial ischemia-reperfusion (IR) injury is not known. The aim of this study was to investigate if activin 2B (ACVR2B) receptor ligands contribute to myocardial IR injury. Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) and subjected to myocardial ischemia followed by reperfusion for 6 or 24 h. Systemic blockade of ACVR2B ligands by ACVR2B-Fc was protective against cardiac IR injury, as evidenced by reduced infarcted area, apoptosis, and autophagy and better preserved LV systolic function fo…

research product

Differentiation of Murine C2C12 Myoblasts Strongly Reduces the Effects of Myostatin on Intracellular Signaling

Alongside in vivo models, a simpler and more mechanistic approach is required to study the effects of myostatin on skeletal muscle because myostatin is an important negative regulator of muscle size. In this study, myostatin was administered to murine (C2C12) and human (CHQ) myoblasts and myotubes. Canonical and noncanonical signaling downstream to myostatin, related ligands, and their receptor were analyzed. The effects of tumorkines were analyzed after coculture of C2C12 and colon cancer-C26 cells. The effects of myostatin on canonical and noncanonical signaling were strongly reduced in C2C12 cells after differentiation. This may be explained by increased follistatin, an endogenous blocke…

research product

Systemic blockade of ACVR2B ligands prevents chemotherapy-induced muscle wasting by restoring muscle protein synthesis without affecting oxidative capacity or atrogenes

AbstractDoxorubicin is a widely used and effective chemotherapy drug. However, cardiac and skeletal muscle toxicity of doxorubicin limits its use. Inhibiting myostatin/activin signalling can prevent muscle atrophy, but its effects in chemotherapy-induced muscle wasting are unknown. In the present study we investigated the effects of doxorubicin administration alone or combined with activin receptor ligand pathway blockade by soluble activin receptor IIB (sACVR2B-Fc). Doxorubicin administration decreased body mass, muscle size and bone mineral density/content in mice. However, these effects were prevented by sACVR2B-Fc administration. Unlike in many other wasting situations, doxorubicin indu…

research product

Muscle protein synthesis, mTORC1/MAPK/Hippo signaling, and capillary density are altered by blocking of myostatin and activins

Loss of muscle mass and function occurs in various diseases. Myostatin blocking can attenuate muscle loss, but downstream signaling is not well known. Therefore, to elucidate associated signaling pathways, we used the soluble activin receptor IIb (sActRIIB-Fc) to block myostatin and activins in mice. Within 2 wk, the treatment rapidly increased muscle size as expected but decreased capillary density per area. sActRIIB-Fc increased muscle protein synthesis 1–2 days after the treatment correlating with enhanced mTORC1 signaling (phosphorylated rpS6 and S6K1, r = 0.8). Concurrently, increased REDD1 and eIF2Bε protein contents and phosphorylation of 4E-BP1 and AMPK was observed. In contrast, pr…

research product

Systemic blockade of ACVR2B ligands attenuates muscle wasting in ischemic heart failure without compromising cardiac function

Signaling through activin receptors regulates skeletal muscle mass and activin receptor 2B (ACVR2B) ligands are also suggested to participate in myocardial infarction (MI) pathology in the heart. In this study, we determined the effect of systemic blockade of ACVR2B ligands on cardiac function in experimental MI, and defined its efficacy to revert muscle wasting in ischemic heart failure (HF). Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) to study its effect on post-MI cardiac remodeling and on later HF. Cardiac function was determined with echocardiography, and myocardium analyzed with histological and biochemical methods for hypertrophy and fibrosis. Pharmacological blo…

research product

Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin blocked mdx mice

The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autoph…

research product

Muscle follistatin gene delivery increases muscle protein synthesis independent of periodical physical inactivity and fasting

Blocking of myostatin and activins effectively counteracts muscle atrophy. However, the potential interaction with physical inactivity and fasting in the regulation of muscle protein synthesis is poorly understood. We used blockade of myostatin and activins by recombinant adeno-associated virus (rAAV)-mediated follistatin (FS288) overexpression in mouse tibialis anterior muscle. To investigate the effects on muscle protein synthesis, muscles were collected 7 days after rAAV-injection in the nighttime or in the daytime representing high and low levels of activity and feeding, respectively, or after overnight fasting, refeeding, or ad libitum feeding. Muscle protein synthesis was increased by…

research product