0000000000305841

AUTHOR

Richard Hill

showing 3 related works from this author

SNEWS 2.0 : a next-generation supernova early warning system for multi-messenger astronomy

2021

The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for t…

Milky WayAstrophysics::High Energy Astrophysical PhenomenasatelliteFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesHigh Energy Physics - Experiment010305 fluids & plasmasHigh Energy Physics - Experiment (hep-ex)Astronomi astrofysik och kosmologistar0103 physical sciencessupernova[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Astronomy Astrophysics and Cosmology010306 general physicssupernova neutrinoscaptureAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysicsWarning systemSupernova Early Warning SystembackgroundAstronomysensitivityGalaxySupernovaelectromagneticNeutrino detectorsupernova neutrinos; multi-messenger astronomy; particle astrophysicsneutrino: burstgalaxyNeutrinoAstrophysics - High Energy Astrophysical Phenomenamulti-messenger astronomy[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]particle astrophysics
researchProduct

NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering

2018

International audience; The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result.In this Wh…

electron nucleus: interactionNuclear TheoryElementary particle7. Clean energy01 natural sciencesCROSS-SECTIONSScatteringHigh Energy Physics - Phenomenology (hep-ph)Nuclear Experimentneutrino: interactionCOHERENT PION-PRODUCTIONPhysicsstrong interactionElectroweak interactionModel; Neutrino; Nuclear; Nucleus; Oscillations; Scattering; Nuclear and High Energy PhysicsHigh Energy Physics - PhenomenologyMUON-NEUTRINONeutrinoNucleonnumerical calculations: Monte CarloNuclear and High Energy PhysicsParticle physicsOscillationsFORM-FACTORSProcess (engineering)FOS: Physical sciencesELECTROMAGNETIC RESPONSEnuclear modelNucleusMESON-EXCHANGE CURRENTSNNLO QCD ANALYSISCHARGED-CURRENT INTERACTIONSnuclear physicsdeep inelastic scattering0103 physical sciencesNeutrinoNuclear010306 general physicsneutrino nucleus: scatteringresonance: modelelectroweak interaction010308 nuclear & particles physicsR=SIGMA-L/SIGMA-Tneutrino nucleus: interactionDeep inelastic scatteringPhysics and Astronomy13. Climate actionINELASTIC ELECTRON-SCATTERING[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Atomic nucleusneutrino: oscillationEvent (particle physics)Model
researchProduct

Theory of elastic neutrino-electron scattering

2020

Theoretical predictions for elastic neutrino-electron scattering have no hadronic or nuclear uncertainties at leading order making this process an important tool for normalizing neutrino flux. However, the process is subject to large radiative corrections that differ according to experimental conditions. In this paper, we collect new and existing results for total and differential cross sections accompanied by radiation of one photon, $\nu e \to \nu e (\gamma)$. We perform calculations within the Fermi effective theory and provide analytic expressions for the electron energy spectrum and for the total electromagnetic energy spectrum as well as for double- and triple-differential cross secti…

PhysicsPhotonNuclear TheoryScatteringFOS: Physical sciencesOrder (ring theory)ElectronPhoton energyComputer Science::Digital LibrariesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Radiative transferNuclear Experiment (nucl-ex)NeutrinoNuclear ExperimentElectron scatteringPhysical Review
researchProduct