0000000000306248

AUTHOR

Wolf B. Frommer

0000-0001-6465-0115

showing 3 related works from this author

Identification of putative interactors of arabidopsis sugar transporters

2021

[SDV] Life Sciences [q-bio]
researchProduct

Identification of Putative Interactors of Arabidopsis Sugar Transporters

2020

International audience; Hexoses and disaccharides are the key carbon sources for essentially all physiological processes across kingdoms. In plants, sucrose, and in some cases raffinose and stachyose, are transported from the site of synthesis in leaves, the sources, to all other organs that depend on import, the sinks. Sugars also play key roles in interactions with beneficial and pathogenic microbes. Sugar transport is mediated by transport proteins that fall into super-families. Sugar transporter (ST) activity is tuned at different levels, including transcriptional and posttranslational levels. Understanding the ST interactome has a great potential to uncover important players in biologi…

0106 biological sciences0301 basic medicineSucrose[SDV]Life Sciences [q-bio]ArabidopsisPlant Science01 natural sciencesInteractomeStachyose03 medical and health scienceschemistry.chemical_compoundArabidopsisArabidopsis thalianaSugar transporterRaffinoseSugarbiologyArabidopsis ProteinsBiological Transportbiology.organism_classificationTransport proteinPlant Leaves030104 developmental biologyBiochemistrychemistry010606 plant biology & botany
researchProduct

The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants

2011

International audience; Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Sela…

0106 biological sciencesSmall RNASELAGINELLA[SDV.BC]Life Sciences [q-bio]/Cellular Biology01 natural sciencesGenome03 medical and health sciencesSelaginella moellendorffiiSelaginellaGENETIQUE VEGETALEGeneInstitut für Biochemie und Biologie030304 developmental biologyGeneticsWhole genome sequencing0303 health sciencesMultidisciplinarybiologyfungiRNAfood and beverages15. Life on landbiology.organism_classificationSELAGINELLA MOELLENDORFFIIRNA editingLYCOPHYTE010606 plant biology & botany
researchProduct