0000000000306434

AUTHOR

Nedra Mekni

showing 3 related works from this author

Targeting SARS-CoV-2 RBD Interface: a Supervised Computational Data-Driven Approach to Identify Potential Modulators

2020

Coronavirus disease 2019 (COVID-19) has spread out as a pandemic threat affecting over 2 million people. The infectious process initiates via binding of SARS-CoV-2 Spike (S) glycoprotein to host angiotensin-converting enzyme 2 (ACE2). The interaction is mediated by the receptor-binding domain (RBD) of S glycoprotein, promoting host receptor recognition and binding to ACE2 peptidase domain (PD), thus representing a promising target for therapeutic intervention. Herein, we present a computational study aimed at identifying small molecules potentially able to target RBD. Although targeting PPI remains a challenge in drug discovery, our investigation highlights that interaction between SARS-CoV…

Protein domainPneumonia ViralDruggabilityDrug Evaluation Preclinicalprotein-protein interactionsComputational biologyBiologyMolecular Dynamics SimulationPeptidyl-Dipeptidase AMolecular dynamics01 natural sciencesBiochemistryMolecular Docking SimulationAntiviral Agentsdockingmolecular dynamicProtein–protein interactionSmall Molecule LibrariesBetacoronavirusProtein DomainsDrug DiscoveryHumansGeneral Pharmacology Toxicology and PharmaceuticsPandemicsPharmacologyFull Paperpharmacophore010405 organic chemistryDrug discoverySARS-CoV-2Organic ChemistryCOVID-19Small molecule0104 chemical sciencesProtein-Protein InteractionMolecular Docking Simulation010404 medicinal & biomolecular chemistryDocking (molecular)Spike Glycoprotein CoronavirusdockingMolecular MedicineAngiotensin-Converting Enzyme 2PharmacophoreCoronavirus InfectionsProtein Binding
researchProduct

Dynamic-shared Pharmacophore Approach as Tool to Design New Allosteric PRC2 Inhibitors, Targeting EED Binding Pocket.

2020

Abstract: The Polycomb Repressive complex 2 (PRC2) maintains a repressive chromatin state and silences many genes, acting as methylase on histone tails. This enzyme was found overexpressed in many types of cancer. In this work, we have set up a Computer-Aided Drug Design approach based on the allosteric modulation of PRC2. In order to minimize the possible bias derived from using a single set of coordinates within the protein-ligand complex, a dynamic workflow was developed. In details, molecular dynamic was used as tool to identify the most significant ligand-protein interactions from several crystallized protein structures. The identified features were used for the creation of dynamic pha…

Computer scienceAllosteric regulationBinding pocketmacromolecular substancesComputational biologyMolecular Dynamics SimulationLigands01 natural sciences03 medical and health sciencesProtein structureStructural BiologyDrug DiscoveryHumans030304 developmental biologyEED0303 health sciencesVirtual screeningBinding SitesbiologyOrganic ChemistryMolecular DynamicPolycomb Repressive Complex 2Dynamic pharmacophorePRC20104 chemical sciencesComputer Science ApplicationsChromatinMolecular Docking Simulation010404 medicinal & biomolecular chemistryROC CurveDocking (molecular)Drug Designbiology.proteinMolecular MedicinePharmacophorePRC2Allosteric SiteProtein BindingMolecular informaticsReferences
researchProduct

In Silico Insights towards the Identification of NLRP3 Druggable Hot Spots

2019

NLRP3 (NOD-like receptor family, pyrin domain-containing protein 3) activation has been linked to several chronic pathologies, including atherosclerosis, type-II diabetes, fibrosis, rheumatoid arthritis, and Alzheimer’s disease. Therefore, NLRP3 represents an appealing target for the development of innovative therapeutic approaches. A few companies are currently working on the discovery of selective modulators of NLRP3 inflammasome. Unfortunately, limited structural data are available for this target. To date, MCC950 represents one of the most promising noncovalent NLRP3 inhibitors. Recently, a possible region for the binding of MCC950 to the NLRP3 protein was described but no details were …

0301 basic medicineInflammasomesComputer sciencehomology modelingMolecular ConformationDruggabilitymcc950Ligands01 natural sciencesPyrin domainlcsh:Chemistrynlrp3 modulationlcsh:QH301-705.5SpectroscopyMolecular Structureintegumentary systemCommunicationInflammasomeGeneral MedicineComputer Science ApplicationsMolecular Docking SimulationdockingProtein Bindingmedicine.drugIn silicoinduced-fit dockingComputational biologyMolecular Dynamics Simulation010402 general chemistryCatalysisInorganic ChemistryStructure-Activity Relationship03 medical and health sciencesNLR Family Pyrin Domain-Containing 3 Proteinnacht domainmedicineHumansHomology modelingPhysical and Theoretical ChemistryMolecular BiologyBinding SitesOrganic ChemistryHydrogen BondingBinding processmolecular dynamics0104 chemical sciences030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Docking (molecular)MutationNACHT domainwalker bInternational Journal of Molecular Sciences
researchProduct