0000000000306461

AUTHOR

Monique Rousset

showing 3 related works from this author

Decrease of mRNA levels and biosynthesis of sucrase-isomaltase but not dipeptidylpeptidase IV in forskolin or monensin-treated Caco-2 cells.

1991

International audience; Treatment for 48 h of differentiated, confluent Caco-2 cells with 2.5 10(-5) M forskolin or 10(-6) M monensin, which produces a significant decrease of the de novo biosynthesis of sucrase-isomaltase, does not change quantitatively the de novo biosynthesis of dipeptidylpeptidase IV. Western blot analysis and silver nitrate staining indicate that neither drug induces any modification in the steady state expression of these two brush border hydrolases. Northern blot analysis shows that the level of dipeptidylpeptidase IV mRNA does not change in treated as compared to control Caco-2 cells. In contrast, forskolin and monensin dramatically decrease the level of sucrase-iso…

Brush borderDipeptidyl Peptidase 4Blotting WesternAdenocarcinomaBiology03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compoundWestern blot[ CHIM.ORGA ] Chemical Sciences/Organic chemistryCyclic AMPTumor Cells CulturedmedicineHumansRNA MessengerNorthern blotMonensinDipeptidyl-Peptidases and Tripeptidyl-PeptidasesMolecular Biology030304 developmental biologyPharmacology0303 health sciencesForskolinmedicine.diagnostic_test[CHIM.ORGA]Chemical Sciences/Organic chemistryColforsin030302 biochemistry & molecular biologyMonensinAntibodies MonoclonalCell BiologyMetabolismBlotting Northern[CHIM.ORGA] Chemical Sciences/Organic chemistrySucrase-Isomaltase ComplexGlucosechemistryBiochemistryCell cultureColonic NeoplasmsMolecular MedicineSucrase-isomaltase
researchProduct

Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epi…

2018

IF 5.547; International audience; Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence bo…

0301 basic medicineArticlescavenger receptor03 medical and health scienceschemistry.chemical_compoundMembrane MicrodomainsLipid droplet[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyScavenger receptorIntestinal MucosaMolecular BiologyLipid raft[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyCholesterolcholesterolEpithelial CellsCell BiologyLipid DropletsScavenger Receptors Class BSphingolipidCell biologySphingomyelinslipid raftTransmembrane domain030104 developmental biologychemistrylipid traffickinglipids (amino acids peptides and proteins)sphingolipidSignal transductionCaco-2 CellsLysophospholipidsSphingomyelinSignal Transduction
researchProduct

Short Term Palmitate Supply Impairs Intestinal Insulin Signaling via Ceramide Production

2016

International audience; The worldwide prevalence of metabolic diseases is increasing, and there are global recommendations to limit consumption of certain nutrients, especially saturated lipids. Insulin resistance, a common trait occurring in obesity and type 2 diabetes, is associated with intestinal lipoprotein overproduction. However, the mechanisms by which the intestine develops insulin resistance in response to lipid overload remain unknown. Here, we show that insulin inhibits triglyceride secretion and intestinal microsomal triglyceride transfer protein expression in vivo in healthy mice force-fed monounsaturated fatty acid-rich olive oil but not in mice force-fed saturated fatty acid…

0301 basic medicinemedicine.medical_specialtyCeramidemedicine.medical_treatmentPalmitic Acid[SDV.BC]Life Sciences [q-bio]/Cellular BiologyPalm OilCeramidesBiochemistryPalmitic acidMice03 medical and health scienceschemistry.chemical_compoundInsulin resistance[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyInternal medicinemedicineAnimalsHumansInsulinPlant OilsIntestinal MucosaPhosphorylationMolecular BiologyComputingMilieux_MISCELLANEOUS2. Zero hungerbiologyTriglycerideInsulinCell BiologyLipid signalingmedicine.diseaseLipids3. Good healthInsulin receptorEnterocytes030104 developmental biologyEndocrinologychemistrySaturated fatty acidbiology.proteinCaco-2 CellsProto-Oncogene Proteins c-akt[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologySignal TransductionJournal of Biological Chemistry
researchProduct