0000000000306665

AUTHOR

Maria Cristina Rulli

A cropland application of Enhanced Weathering in the Mediterranean area to face climate change and preserve natural resources

The goal of limiting the use of natural resources and combatting climate change has led to the improvement of agricultural techniques and the development of some Carbon Dioxide Removal (CDR) techniques, given their proficiency to sequester carbon from the atmospheric CO2 and to store it in more stable forms within oceans, plants, soil, or other terrestrial environments. Among them, Enhanced Weathering (EW) is regarded as one of the most promising. This consists of amending soils with silicate minerals, such as olivine, so as to speed up the weathering process that naturally occurs in soils. This work aims to couple a model for the resolution of the agro-hydrological balance in the active so…

research product

The Role of Hydrological Processes on Enhanced Weathering for Carbon Sequestration in Cropland Areas: An Application to Italy

Aiming at facing climate change, some CDR (Carbon Dioxide Removal) techniques are currently studied given their capability to sequester carbon from the atmospheric CO2 and to store it within oceans, plants, soil, or other terrestrial environments. Among them, Enhanced Weathering (EW), that acts in speeding up the chemical weathering naturally occurring in soils through the amendments of highly reactive silicate minerals, is referred to as one of the most promising. Hot and humid climates provide the best conditions for EW, since reactions are faster at high temperature, high soil water content and low soil pH. This study presents a dynamic mass balance model that explores ecohydrological, b…

research product

Hydrological consequences of natural rubber plantations in Southeast Asia

Since the turn of the century, rubber plantations have been expanding their footprint across Southeast Asia in response to an increasing global demand for rubber products. Between 2000 and 2014, the area cultivated with rubber more than doubled. It is not clear how this major change in the agricultural landscape of Southeast Asia, the main area of rubber production in the world, is affecting land‐use patterns and water resources in the region. Here we use maps of rubber plantations and other croplands in conjunction with a hydrological model and remote sensing analyses to assess land‐use patterns and water resources affected by natural rubber plantations. Results show water requirements of …

research product