0000000000306946

AUTHOR

F. Cucco

showing 5 related works from this author

Stress fields by the symmetric Galerkin boundary element method

2004

The paper examines the stress state of a body with the discretized boundary embedded in the infinite domain subjected to layered or double-layered actions, such as forces and displacement discontinuities on the boundary, and to internal actions, such as body forces and thermic variations, in the ambit of the symmetric Galerkin boundary element method (SGBEM). The stress distributions due to internal actions (body forces and thermic variations) were computed by transforming the volume integrals into boundary integrals. The aim of the paper is to show the tension state in Ω∞ as a response to all the actions acting in Ω when this analysis concerns the crossing of the discretized boundary, thu…

Body forceApplied MathematicsMechanical EngineeringMathematical analysisBoundary (topology)Mixed boundary conditionSingular boundary methodBoundary knot methodVolume integralMechanics of MaterialsModeling and SimulationGalerkin methodBoundary element methodMathematicsThe Journal of Strain Analysis for Engineering Design
researchProduct

Boundary discretization based on the residual energy using the SGBEM

2007

Abstract The paper has as objective the estimation of the error in the structural analysis performed by using the displacement approach of the Symmetric Galerkin Boundary Element Method (SGBEM) and suggests a strategy able to reduce this error through an appropriate change of the boundary discretization. The body, characterized by a domain Ω and a boundary Γ−, is embedded inside a complementary unlimited domain Ω∞⧹Ω bounded by a boundary Γ+. In such new condition it is possible to perform a separate valuation of the strain energies in the two subdomains through the computation of the work, defined generalized, obtained as the product among nodal and weighted quantities on the actual boundar…

Meshes optimizationGalerkin approachMechanical EngineeringApplied MathematicsMathematical analysisBoundary (topology)Mixed boundary conditionBoundary knot methodSingular boundary methodCondensed Matter PhysicsRobin boundary conditionSymmetric Boundary Element MethodMaterials Science(all)Mechanics of MaterialsModeling and SimulationModelling and SimulationNeumann boundary conditionFree boundary problemGeneral Materials ScienceCauchy boundary conditionMathematicsInternational Journal of Solids and Structures
researchProduct

Incremental elastoplastic analysis for active macro-zones

2012

SUMMARY In this paper a strategy to perform incremental elastoplastic analysis using the symmetric Galerkin boundary element method for multidomain type problems is shown. The discretization of the body is performed through substructures, distinguishing the bem-elements characterizing the so-called active macro-zones, where the plastic consistency condition may be violated, and the macro-elements having elastic behaviour only. Incremental analysis uses the well-known concept of self-equilibrium stress field here shown in a discrete form through the introduction of the influence matrix (self-stress matrix). The nonlinear analysis does not use updating of the elastic response inside each plas…

Numerical AnalysisDiscretizationbusiness.industryApplied MathematicsGeneral EngineeringStructural engineeringStress fieldNonlinear systemMatrix (mathematics)Consistency (statistics)Applied mathematicsReduction (mathematics)Galerkin methodbusinessBoundary element methodMathematicsInternational Journal for Numerical Methods in Engineering
researchProduct

Symmetric boundary element method versus finite element method

2002

The paper examines the effectiveness of the symmetric boundary element formulation when the continuum body is subdivided into large elements called macro-elements. The approach proposed combines a strong reduction of variables with an elastic solution close to the real response. Indeed, if the displacement method is used, this approach permits one to determine for every macro-element a relationship connecting the weighted traction vector defined on the sides of the interface boundary with the node displacement vector of the same boundary and with the external action vector. Such a strategy is very similar to that followed through the finite element method, but with the advantages of having …

Mechanical EngineeringMathematical analysisComputational MechanicsGeneral Physics and AstronomyGeometryMixed finite element methodSingular boundary methodBoundary knot methodFinite element methodComputer Science ApplicationsBoundary elementMechanics of MaterialsAnalytic element methodSymmetric boundary element methodMethod of fundamental solutionsSubstructuringSettore ICAR/08 - Scienza Delle CostruzioniBoundary element methodMathematicsExtended finite element method
researchProduct

Active macro-zone approach for incremental elastoplastic-contact analysis

2013

SUMMARY The symmetric boundary element method, based on the Galerkin hypotheses, has found an application in the nonlinear analysis of plasticity and in contact-detachment problems, but both dealt with separately. In this paper, we want to treat these complex phenomena together as a linear complementarity problem. A mixed variable multidomain approach is utilized in which the substructures are distinguished into macroelements, where elastic behavior is assumed, and bem-elements, where it is possible that plastic strains may occur. Elasticity equations are written for all the substructures, and regularity conditions in weighted (weak) form on the boundary sides and in the nodes (strong) betw…

Numerical AnalysisNonlinear systemMatrix (mathematics)Applied MathematicsMathematical analysisGeneral EngineeringContact analysisBoundary (topology)Galerkin methodBoundary element methodLinear complementarity problemMathematicsVariable (mathematics)International Journal for Numerical Methods in Engineering
researchProduct