0000000000308209

AUTHOR

B. Ducloué

Centrality-dependent forward J/ψ production in high energy proton-nucleus collisions

Forward $J/\psi$ production and suppression in high energy proton-nucleus collisions can be an important probe of gluon saturation. In an earlier work we studied this process in the Color Glass Condensate framework and showed that using the Glauber approach to extrapolate the dipole cross section of a proton to a nucleus leads to results closer to experimental data than previous calculations in this framework. Here we investigate the centrality dependence of the nuclear suppression in this model and show a comparison of our results with recent LHC data.

research product

Forward $J/\psi$ and $D$ meson nuclear suppression at the LHC

Using the color glass condensate formalism, we study the nuclear modification of forward $J/\psi$ and $D$ meson production in high energy proton-nucleus collisions at the LHC. We show that relying on the optical Glauber model to obtain the dipole cross section of the nucleus from the one of the proton fitted to HERA DIS data leads to a smaller nuclear suppression than in the first study of these processes in this formalism and a better agreement with experimental data.

research product

On the implementation of NLO high energy factorization in single inclusive forward hadron production

Single inclusive particle production cross sections in high energy hadron collisions at forward rapidity are an important benchmark process for the CGC picture of small x QCD. Recent calculations of this process have not led to a stable perturbative expansion for this quantity at high transverse momenta. We consider the quark channel production cross section using the new rapidity factorization procedure proposed by Iancu et al. We show that for fixed coupling one does indeed obtain a physically meaningful cross section which is positive and reduces in a controlled way to previous leading order calculations. We also consider a running coupling that depends on the transverse momentum of the …

research product

On the use of a running coupling in the calculation of forward hadron production at next-to-leading order

research product

Factorization of the soft gluon divergence from the dipole picture deep inelastic scattering cross sections at next-to-leading order

We use a factorization scheme analogous to one proposed for single inclusive forward hadron production to factorize the soft gluon divergence present in the deep inelastic scattering cross sections in the dipole picture at next-to-leading order (NLO). We show numerically that in this carefully constructed scheme it is possible to obtain meaningful results for the DIS cross sections at NLO, and so we are able to quantitatively study the recently derived NLO corrections to the DIS cross sections. We find that the NLO corrections can be significant and sensitive to the details of the factorization scheme used for the resummation of the large logarithms into the BK evolution equation. In the ca…

research product

On the use of a running coupling in the calculation of forward hadron production at next-to-leading order

We study a puzzle raised recently regarding the running coupling prescription used in the calculation of forward particle production in proton-nucleus collisions at next-to-leading order: using a coordinate space prescription which is consistent with the one used in the high energy evolution of the target leads to results which can be two orders of magnitude larger than the ones obtained with a momentum space prescription. We show that this is an artefact of the Fourier transform involved when passing between coordinate and momentum space and propose a new coordinate space prescription which avoids this problem.

research product

Forward rapidity isolated photon production in proton-nucleus collisions

We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the Color Glass Condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initial condition fit to deep inelastic scattering data and extended to nuclei with an optical Glauber procedure that introduces no additional parameters beyond the basic nuclear geometry. We present predictions for future forward RHIC and LHC measurements. The predictions are also compared to updated results for the nuclear modification factors for pion production, Drell-Yan dileptons and $J/\psi$ mesons in the same forward kinematics, consistently c…

research product

Isolated photon production in proton-nucleus collisions at forward rapidity

We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the Color Glass Condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initial condition fit to deep inelastic scattering data. For comparison, we also update the results for the nuclear modification factor for pion production in the same kinematics. We present predictions for future forward RHIC and LHC measurements at $\sqrt{s_{NN}}=200$ GeV and $\sqrt{s_{NN}}=8$ TeV.

research product

QCD resummation effects in forward $J/\psi$ and very backward jet inclusive production at the LHC

We propose and study the inclusive production of a forward $J/\psi$ and a very backward jet at the LHC as an observable to reveal high-energy resummation effects \`a la BFKL. Our different predictions are based on the various existing mechanisms to describe the production of the $J/\psi$, namely, NRQCD singlet and octet contributions, and the color evaporation model.

research product

Nuclear modification of forward $J/\psi$ production in proton-nucleus collisions at the LHC

We re-evaluate the nuclear suppression of forward $J/\psi$ production at high energy in the Color Glass Condensate framework. We use the collinear approximation for the projectile proton probed at large $x$ and an up to date dipole cross section fitted to HERA data to describe the target in proton-proton collisions. We show that using the Glauber approach to generalize the proton dipole cross section to the case of a nucleus target leads to a nuclear modification factor much closer to LHC data than previous estimates using the same framework.

research product