0000000000309138

AUTHOR

Maravanji S. Balakrishna

ChemInform Abstract: Weak Interactions Between Trivalent Pnictogen Centers: Computational Analysis of Bonding in Dimers X3E···EX3(E: Pnictogen, X: Halogen).

The nature of weak interactions in dimers X3E···EX3 (E = N−Bi, X = F−I) was investigated by wave function and density functional theory (DFT)-based methods. Out of the 20 systems studied, 10 are found to be bound at the CP-MP2 and LMP2 levels of theory. Detailed partition of the interaction energy into different components revealed that dispersion is the primary force holding the dimers together but there also exists an important ionic component whose contribution increases with increasing halogen size. As expected, standard density functionals fail to describe bonding in the studied systems. However, the performance of DFT methods can be easily improved via empirical dispersion correction …

research product

Copper(I) Complexes of Bis(2-(diphenylphosphino)phenyl) Ether:  Synthesis, Reactivity, and Theoretical Calculations

The tricoordinated cationic Cu-I complex [Cu(kappa(2)-P,P'-DPEphos)(kappa(1)-P-DPEphos)][BF4] (1) (DPEphos = bis(2-(diphenylphosphino)phenyl) ether) containing a dangling phosphorus center was synthesized from the reaction of [Cu(CH3CN)(4)][BF4] with DPEphos in a 1:2 molar ratio in dichloromethane. When complex 1 is treated with MnO2, elemental sulfur, or selenium, the uncoordinated phosphorus atom undergoes oxidation to form a PE bond resulting in the formation of complexes of the type [Cu(kappa(2)-P,P'-DPEphos)(kappa(2)-P,E-DPEphos-E)][BF4] (2, E = O; 3, E = S; 4, E = Se) containing a Cu-E bond. The zigzag polymeric Cu-I complex [Cu(kappa(2)-P,P'-DPEphos)(mu-4,4'-bpy)](n)[BF4](n) (5) was …

research product

Weak interactions between trivalent pnictogen centers: computational analysis of bonding in dimers X3E...EX3 (E = pnictogen, X = halogen).

The nature of weak interactions in dimers X(3)E...EX(3) (E = N-Bi, X = F-I) was investigated by wave function and density functional theory (DFT)-based methods. Out of the 20 systems studied, 10 are found to be bound at the CP-MP2 and LMP2 levels of theory. Detailed partition of the interaction energy into different components revealed that dispersion is the primary force holding the dimers together but there also exists an important ionic component whose contribution increases with increasing halogen size. As expected, standard density functionals fail to describe bonding in the studied systems. However, the performance of DFT methods can be easily improved via empirical dispersion correct…

research product