0000000000309193

AUTHOR

Tatiana ÁBalos

Hg2+ and Cu2+ selective detection using a dual channel receptor based on thiopyrylium scaffoldings

2,4,6-Triphenylthiopyrylium functionalized with an aza-oxa-thia macrocycle is able to selectively recognize Hg2+ cation by a color change and Cu2+ cation by a remarkable significant emission enhancement.

research product

Surfactant-assisted chromogenic sensing of cyanide in water

Chromogenic cyanide recognition in water was achieved by the use of a hydrophobic dye in micellar containers.

research product

Multi-channel receptors based on thiopyrylium functionalised with macrocyclic receptors for the recognition of transition metal cations and anions.

We report herein the synthesis and characterization of a family of ligands containing different cation binding sites covalently connected to a thiopyrylium signalling reporter. The receptors L1–L6 are able to signal the presence of certain metal cations via three different channels; i.e. electrochemically, fluorogenically and chromogenically. An acetonitrile solution of L1–L6 shows a bright blue colour due to a charge-transfer band in the 575–585 nm region. The colour variation in acetonitrile of L1–L6 in the presence of the metal cations Ag+, Cd2+, Cu2+, Fe3+, Hg2+, Ni2+, Pb2+ and Zn2+ has been studied. A selective hypsochromic shift of the blue band was found for the systems L4-Pb2+ and L…

research product

Dyes That Bear Thiazolylazo Groups as Chromogenic Chemosensors for Metal Cations

A family of dyes (L 1-L 6) that contain a thiazolylazo group as signalling subunit and several macrocyclic cavities with different ring sizes and type and number of heteroatoms as binding sites has been synthesized and characterized. Solutions of L 1-L 6 in acetonitrile show broad and structureless absorption bands in the 554-577 nm range with typicalmolar absorption coefficients that range from 20000 to 32000 M -1 cm -1. A detailed protonation study was carried out with solutions of L 1, L 2 and L 5 in acetonitrile. Addition of one equivalent of protons to L 1 and L 2 resulted in the development of a new band at 425 and 370 nm, respectively, which was ascribed to protonation in the aniline…

research product