0000000000309257

AUTHOR

Jakob Ablinger

3-loop heavy flavor Wilson coefficients in deep-inelastic scattering

Abstract We present our most recent results on the calculation of the heavy flavor contributions to deep-inelastic scattering at 3-loop order in the large Q 2 limit, where the heavy flavor Wilson coefficients are known to factorize into light flavor Wilson coefficients and massive operator matrix elements. We describe the different techniques employed for the calculation and show the results in the case of the heavy flavor non-singlet and pure singlet contributions to the structure function F 2 ( x , Q 2 ) .

research product

3-Loop Heavy Flavor Corrections in Deep-Inelastic Scattering with Two Heavy Quark Lines

We consider gluonic contributions to the heavy flavor Wilson coefficients at 3-loop order in QCD with two heavy quark lines in the asymptotic region $Q^2 \gg m_{1(2)}^2$. Here we report on the complete result in the case of two equal masses $m_1 = m_2$ for the massive operator matrix element $A_{gg,Q}^{(3)}$, which contributes to the corresponding heavy flavor transition matrix element in the variable flavor number scheme. Nested finite binomial sums and iterated integrals over square-root valued alphabets emerge in the result for this quantity in $N$ and $x$-space, respectively. We also present results for the case of two unequal masses for the flavor non-singlet OMEs and on the scalar int…

research product

Recent progress on the calculation of three-loop heavy flavor Wilson coefficients in deep-inelastic scattering

We report on our latest results in the calculation of the three-loop heavy flavor contributions to the Wilson coefficients in deep-inelastic scattering in the asymptotic region $Q^2 \gg m^2$. We discuss the different methods used to compute the required operator matrix elements and the corresponding Feynman integrals. These methods very recently allowed us to obtain a series of new operator matrix elements and Wilson coefficients like the flavor non-singlet and pure singlet Wilson coefficients.

research product