A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover
Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR), kernel ridge regression (KRR), artificial neural networks (NN), random forest regression (RFR) and partial least squares regression (PLSR). Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, gras…