0000000000312411

AUTHOR

Maguelonne Teisseire

0000-0001-9313-6414

showing 3 related works from this author

Healthcare trajectory mining by combining multidimensional component and itemsets

2012

Sequential pattern mining is aimed at extracting correlations among temporal data. Many different methods were proposed to either enumerate sequences of set valued data (i.e., itemsets) or sequences containing multidimensional items. However, in real-world scenarios, data sequences are described as events of both multidimensional items and set valued information. These rich heterogeneous descriptions cannot be exploited by traditional approaches. For example, in healthcare domain, hospitalizations are defined as sequences of multi-dimensional attributes (e.g. Hospital or Diagnosis) associated with two sets, set of medical procedures (e.g. $ \lbrace $ Radiography, Appendectomy $\rbrace$) and…

Sequential PatternsComputer scienceDONNEE MEDICALE02 engineering and technologyReusecomputer.software_genreSynthetic dataDomain (software engineering)DATA MININGSet (abstract data type)Multi-dimensional Sequential Patterns020204 information systemsComponent (UML)SANTE0202 electrical engineering electronic engineering information engineeringPoint (geometry)SEQUENTIAL PATTERNMULTI DIMENSIONAL SEQUENTIAL PATTERNANALYSE DE DONNEES[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB]BASE DE DONNEESTemporal databaseINFORMATIQUEScalabilityTRAJECTOIRE[SDE]Environmental Sciences020201 artificial intelligence & image processingData miningFOUILLEcomputer
researchProduct

Constitution de corpus thématique : Pour un meilleur suivi du territoire de la Métropole de Montpellier Méditerranée

2021

International audience

[SDE] Environmental Sciences[SDE]Environmental Sciences[INFO]Computer Science [cs][INFO] Computer Science [cs]ComputingMilieux_MISCELLANEOUS
researchProduct

A Simple Fusion Method for Image Time Series Based on the Estimation of Image Temporal Validity

2015

High-spatial-resolution satellites usually have the constraint of a low temporal frequency, which leads to long periods without information in cloudy areas. Furthermore, low-spatial-resolution satellites have higher revisit cycles. Combining information from high- and low- spatial-resolution satellites is thought a key factor for studies that require dense time series of high-resolution images, e.g., crop monitoring. There are several fusion methods in the bibliography, but they are time-consuming and complicated to implement. Moreover, the local evaluation of the fused images is rarely analyzed. In this paper, we present a simple and fast fusion method based on a weighted average of two in…

TeledeteccióComputer scienceforêt tropicalehttp://aims.fao.org/aos/agrovoc/c_714remote sensingSimple (abstract algebra)K01 - Foresterie - Considérations généralesBiomassehttp://aims.fao.org/aos/agrovoc/c_6498validationUtilisation des terresEucalyptusFusionQhttp://aims.fao.org/aos/agrovoc/c_14093http://aims.fao.org/aos/agrovoc/c_9000094Plantation forestièreséquestration du carbonehttp://aims.fao.org/aos/agrovoc/c_926http://aims.fao.org/aos/agrovoc/c_1070http://aims.fao.org/aos/agrovoc/c_25409http://aims.fao.org/aos/agrovoc/c_4182P01 - Conservation de la nature et ressources foncièresSpectrométriePhénologiehttp://aims.fao.org/aos/agrovoc/c_2683TélédétectionScienceImage (mathematics)Cartographie de l'occupation du solhttp://aims.fao.org/aos/agrovoc/c_24904TermodinàmicaCouverture végétalehttp://aims.fao.org/aos/agrovoc/c_7283http://aims.fao.org/aos/agrovoc/c_1666http://aims.fao.org/aos/agrovoc/c_8176http://aims.fao.org/aos/agrovoc/c_3048MODIS; Landsat; validation; remote sensingRemote sensingChangement climatiqueSeries (mathematics)business.industryCiències de la terraPattern recognitionVégétationhttp://aims.fao.org/aos/agrovoc/c_331583Constraint (information theory)http://aims.fao.org/aos/agrovoc/c_5774SpectroradiometerMODISSatelliteGeneral Earth and Planetary SciencesArtificial intelligenceU30 - Méthodes de recherchebusinessLandsatRemote Sensing; Volume 7; Issue 1; Pages: 704-724
researchProduct