0000000000312417

AUTHOR

Faroha Liaqat

0000-0001-7945-2621

Defect-controlled hypersound propagation in hybrid superlattices

We employ spontaneous Brillouin light scattering spectroscopy and detailed theoretical calculations to reveal and identify elastic excitations inside the band gap of hypersonic hybrid superlattices. Surface and cavity modes, their strength and anticrossing are unambiguously documented and fully controlled by layer thickness, elasticity, and sequence design. This new soft matter based superlattice platform allows facile engineering of the density of states and opens new pathways to tunable phoxonic crystals.

research product

High-Performance TiO2 Nanoparticle/DOPA-Polymer Composites

Many natural materials are complex composites whose mechanical properties are often outstanding considering the weak constituents from which they are assembled. Nacre, made of inorganic (CaCO 3 ) and organic constituents, is a textbook example because of its strength and toughness, which are related to its hierarchical structure and its well-defi ned organic–inorganic interface. Emulating the construction principles of nacre using simple inorganic materials and polymers is essential for understanding how chemical composition and structure determine biomaterial functions. A hard multilayered nanocomposite is assembled based on alternating layers of TiO 2 nanoparticles and a 3-hydroxytyramine…

research product

Ultrastrong composites from dopamine modified-polymer-infiltrated colloidal crystals

Although strong and stiff synthetic composites have long been developed, the microstructure of today's most advanced composites has yet to achieve the sophisticated hierarchy of hybrid materials built up by living organisms. We have assembled hard and tough multilayered nanocomposites, which contain alternating layers of Fe3O4 nanoparticles and a 3-hydroxy-tyramine (dopamine) substituted polymer (dopamine modified polymer), strongly cemented together by chelation through infiltration of the polymer into the Fe3O4 mesocrystal. With a Young's modulus of 17 ± 3 GPa and a hardness of 1.3 ± 0.4 GPa the nanocomposite exhibits high resistance against elastic as well as plastic deformation. Key fea…

research product

Engineering the hypersonic phononic band gap of hybrid Bragg stacks.

We report on the full control of phononic band diagrams for periodic stacks of alternating layers of poly(methyl methacrylate) and porous silica combining Brillouin light scattering spectroscopy and theoretical calculations. These structures exhibit large and robust on-axis band gaps determined by the longitudinal sound velocities, densities, and spacing ratio. A facile tuning of the gap width is realized at oblique incidence utilizing the vector nature of the elastic wave propagation. Off-axis propagation involves sagittal waves in the individual layers, allowing access to shear moduli at nanoscale. The full theoretical description discerns the most important features of the hypersonic one…

research product