0000000000313302

AUTHOR

Y. Brito-sánchez

showing 1 related works from this author

Comparative study to predict toxic modes of action of phenols from molecular structures.

2013

Quantitative structure-activity relationship models for the prediction of mode of toxic action (MOA) of 221 phenols to the ciliated protozoan Tetrahymena pyriformis using atom-based quadratic indices are reported. The phenols represent a variety of MOAs including polar narcotics, weak acid respiratory uncouplers, pro-electrophiles and soft electrophiles. Linear discriminant analysis (LDA), and four machine learning techniques (ML), namely k-nearest neighbours (k-NN), support vector machine (SVM), classification trees (CTs) and artificial neural networks (ANNs), have been used to develop several models with higher accuracies and predictive capabilities for distinguishing between four MOAs. M…

Antiprotozoal AgentsQuantitative Structure-Activity RelationshipBioengineeringMachine learningcomputer.software_genreConstant false alarm ratePhenolsArtificial IntelligenceDrug DiscoveryTraining setModels StatisticalArtificial neural networkCiliated protozoanMolecular StructureChemistrybusiness.industryTetrahymena pyriformisGeneral MedicineLinear discriminant analysisSupport vector machineTest setTetrahymena pyriformisMolecular MedicineArtificial intelligenceNeural Networks ComputerBiological systembusinesscomputerSAR and QSAR in environmental research
researchProduct