0000000000315887

AUTHOR

Kamal Baba

0000-0002-8405-035x

showing 7 related works from this author

Conductive Directly Fused Poly(Porphyrin) Coatings by Oxidative Chemical Vapour Deposition - From Single- to Triple-Fused

2019

chemistry.chemical_compoundchemistryPolymerizationChemical engineeringOrganic ChemistryChemical vapor depositionPhysical and Theoretical ChemistryThin filmPorphyrinElectrical conductorEuropean Journal of Organic Chemistry
researchProduct

Molecular Engineering of Porphyrin‐Tapes/Phthalocyanine Heterojunctions for a Highly Sensitive Ammonia Sensor

2020

International audience; Modulating the interfacial charge alignments by molecular engineering in an organic heterojunction device is a smart strategy to improve its conductivity, which can be exploited in high performance gas sensors development. Herein, the fabrication of new organic heterojunction devices based on porphyrin tapes and phthalocyanines and their potentiality in ammonia sensing at different relative humidity (rh) are investigated. The devices are built using dry approach relying on oxidative chemical vapor deposition for simultaneous synthesis, doping and deposition of the porphyrin tape layer and physical vapor deposition of phthalocyanine layer. The association of the porph…

PorphyrinsMaterials scienceSensorsPhthalocyaninesHeterojunction[CHIM.MATE]Chemical Sciences/Material chemistry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesPorphyrin0104 chemical sciencesElectronic Optical and Magnetic MaterialsHighly sensitiveMolecular engineeringAmmoniachemistry.chemical_compoundchemistryAmmonia[CHIM.ANAL]Chemical Sciences/Analytical chemistryHeterojunctionsPhthalocyanine0210 nano-technologyAdvanced Electronic Materials
researchProduct

Constitution and conductivity of metalloporphyrin tapes

2020

Inorganic Chemistry540 Chemistry and allied sciencesChemical engineeringChemistryConstitutionmedia_common.quotation_subject540 ChemieOxidative coupling of methaneChemical vapor depositionConductivityThin filmmedia_common
researchProduct

Molecular flattening effect to enhance the conductivity of fused porphyrin tape thin films.

2019

The straightforward synthesis of directly fused porphyrins (porphyrin tapes) from 5,15-diphenyl porphyrinato nickel(II) complexes with different substituents on the phenyl rings is achieved while processing from the gas phase. The porphyrin tapes, exhibiting NIR absorption, are readily obtained in thin film form. The gas phase approach cuts the need for solubilizing groups allowing for the first time the study of their conductivity according to the substituent. 2-Point probe and conductivity AFM measurements evidence that reducing the size of the meso substituents, phenyl < mesityl < di(3,5-tert-butyl)phenyl < di(2,6-dodecyloxy)phenyl, improves the thin film conductivity by several orders o…

Materials scienceGeneral Chemical EngineeringSubstituentStackingGeneral ChemistryConductivityPorphyrinchemistry.chemical_compoundCrystallographyMolecular geometrychemistryIntramolecular forceMoleculeThin filmRSC advances
researchProduct

Reactivity of Nickel(II) Porphyrins in oCVD Processes—Polymerisation, Intramolecular Cyclisation and Chlorination

2019

Abstract Oxidative chemical vapour deposition of (5,15‐diphenylporphyrinato)nickel(II) (NiDPP) with iron(III) chloride as oxidant yielded a conjugated poly(metalloporphyrin) as a highly coloured thin film, which is potentially useful for optoelectronic applications. This study clarified the reactive sites of the porphyrin monomer NiDPP by HRMS, UV/Vis/NIR spectroscopy, cyclic voltammetry and EPR spectroscopy in combination with quantum chemical calculations. Unsubstituted meso positions are essential for successful polymerisation, as demonstrated by varying the porphyrin meso substituent pattern from di‐ to tri‐ and tetraphenyl substitution. DFT calculations support the proposed radical oxi…

Conjugated systemporphyrins010402 general chemistryPhotochemistry01 natural sciencesCatalysischemical vapor depositionnickelchemistry.chemical_compoundReactivity (chemistry)Full Paper010405 organic chemistryOrganic ChemistryRegioselectivityGeneral ChemistryFull PapersPorphyrin0104 chemical sciencesMonomerthin filmschemistryPolymerizationpolymerizationChemical Vapor Deposition | Hot PaperOxidative coupling of methaneCyclic voltammetryChemistry – A European Journal
researchProduct

Conductive Fused Porphyrin Tapes on Sensitive Substrates by a Chemical Vapor Deposition Approach.

2019

Abstract Oxidative polymerization of nickel(II) 5,15‐diphenyl porphyrin and nickel(II) 5,15‐bis(di‐3,5‐tert‐butylphenyl) porphyrin by oxidative chemical vapor deposition (oCVD) yields multiply fused porphyrin oligomers in thin film form. The oCVD technique enables one‐step formation, deposition, and p‐doping of conjugated poly(porphyrins) coatings without solvents or post‐treatments. The decisive reactions and side reactions during the oCVD process are shown by high‐resolution mass spectrometry. Owing to the highly conjugated structure of the fused tapes, the thin films exhibit an electrical conductivity of 3.6×10−2 S cm−1 and strong absorption in the visible to near‐infrared spectral regio…

Materials scienceSiliconchemistry.chemical_elementChemical vapor depositionConjugated system010402 general chemistryporphyrins01 natural sciencesoxidative couplingCatalysischemical vapor depositionchemistry.chemical_compoundDeposition (phase transition)Thin filmThin Films010405 organic chemistryCommunicationGeneral ChemistryGeneral MedicinePorphyrinCommunications0104 chemical sciencesNickelchemistryPolymerizationChemical engineeringpolymerizationAngewandte Chemie (International ed. in English)
researchProduct

Front Cover: Constitution and Conductivity of Metalloporphyrin Tapes (Eur. J. Inorg. Chem. 20/2020)

2020

Inorganic ChemistryFront coverChemistryConstitutionmedia_common.quotation_subjectThermodynamicsConductivitymedia_commonEuropean Journal of Inorganic Chemistry
researchProduct