0000000000319853

AUTHOR

Mario Argenziano

0000-0002-3131-5692

showing 6 related works from this author

Improving the Seismic Response of Tall Buildings: From Diagrid to Megastructures and Mega-Subcontrol Systems

2022

Background: Diagrid structures, widely used for the tall buildings of the third millennium, are characterized by a very effective behaviour in the elastic field due to the grid triangulation. In particular, under horizontal actions, axial forces and deformations mainly arise in the structural members of the diagrid, thus resulting in the reduction of the shear lag effect and racking deformations. The response to incremental horizontal actions beyond the plastic threshold, however, shows a poor plastic redistribution capacity, with consequent low values of global ductility, in spite of a significant design overstrength. Objective: In this paper, it is proposed to exploit the high elastic ef…

Diagrid structures Megastructures Mega-sub-structures Seismic response Vibration control Non-conventional tuned mass damper.Building and Construction
researchProduct

Coupling of Structural Additions for the Mitigation of Seismic Response in Existing Buildings

2023

In the present paper, additions in structural steelwork are utilized for giving new life to old buildings in regions characterized by medium/high seismic hazard. Two models are here proposed, i.e.: vertical addition for masonry buildings and lateral addition for r.c. buildings. For the model of vertical addition, the connection between the masonry and steel structures is realized by means of an Intermediate Isolation System (IIS). For the model of lateral addition, an exoskeleton (EXO) is connected to the existing building by means of rigid or flexible and dissipative link. Two buildings, representative of the heterogeneous Italian building stock, are selected as case studies. Parametric an…

ExoskeletonSeismic retrofitLateral additionStructural steelworkIntermediate isolation systemVertical addition
researchProduct

Upwards - Vertical extensions of masonry built heritage for sustainable and antifragile urban densification

2021

Abstract Urban densification represents one of the biggest universal challenges of contemporary cities: the increase of urban population requires new spaces to accommodate the growing demand for housing, working and tertiary activities. However, the land available for new constructions in highly urbanized areas is very limited. In this framework, the vertical extension of existing buildings is the most sustainable strategy and fascinating. Masonry structures , constituting a major part of the built stock in the historical city centres of several European countries, are particularly suitable for vertical addition of extra-floors, since they generally exhibit an adequate overstrength for bear…

EngineeringPopulation0211 other engineering and technologies02 engineering and technologyCivil engineeringlaw.inventionlaw021105 building & constructionArchitecture021108 energySafety Risk Reliability and QualityeducationStock (geology)Civil and Structural Engineeringeducation.field_of_studyBearing (mechanical)Seismic retrofitVertical additionsSustainable strategybusiness.industryMasonry buildingsSeismic isolationBuilding and ConstructionMasonryMasonry buildingUrban densificationMechanics of MaterialsIsolation systemSeismic retrofitBuilt heritagebusinessJournal of Building Engineering
researchProduct

Intermediate Isolation System with Nonlinear Lower Structure and Isolation System

2023

This paper reports a study on the Intermediate Isolation System (IIS) applied to existing buildings. This kind of application is particularly suitable when a vertical addition is planned for buildings in seismic zones; in such a case, an isolation system can be placed at the base of the extension to prevent the increase, or, better, to reduce the seismic demand on the existing structure. In previous works, parametric response spectrum analyses have been carried out on lumped mass models by varying the period of the isolation system. As a result, a sort of IIS design spectrum has been derived and used for selecting design solutions for the vertical extension that minimize the overall seismic…

Fluid Flow and Transfer ProcessesProcess Chemistry and Technologyvertical extensionnonconventional TMDGeneral EngineeringGeneral Materials Sciencevertical extension; intermediate isolation system; nonconventional TMD; masonry structures; seismic retrofitInstrumentationintermediate isolation systemmasonry structuresComputer Science Applicationsseismic retrofit
researchProduct

INNOVATIVE MASS-DAMPING-BASED APPROACHES FOR SEISMIC DESIGN OF TALL BUILDINGS

2021

Mass damping is a well known principle for the reduction of structural vibrations and applied in tall building design in a variety of configurations. With mass usually small (around 1% of building mass), the properly “tuned” mass damper (TMD) shows great effectiveness in reduc-ing wind vibrations, but minor advantages under earthquake excitations. The above limitation can be surpassed by utilizing relatively large mass TMD. For this pur-pose, two different solutions are here proposed. In both cases, the idea is to separate the building into two or more parts, thus allowing for a relative motion between them, and acti-vating the mass damping mechanism. In the first solution, the building is …

business.industryTall buildingMotion based designMass damping motion based design vibrations control tall buildings Mega Sub-structure Control System Intermediate Isolation Systems.Structural engineeringIntermediate isolation systemVibrations controlMass dampingbusinessGeologySeismic analysisMega substructure control system
researchProduct

The Effect of Nonlinear Response of the Primary System in Nonconventional TMDs

2023

Tuned Mass Dampers (TMD) have been widely used in the passive vibration control of engineering structures, both under wind and seismic loads. Under wind loads, a proper frequency tuning ensures a significant response reduction of the primary structure. While under wind loads the structure is likely to remain in the elastic range of behaviour, when large earthquakes occur it can experience inelastic deformations and damage, with a consequent de-tuning effect. In this paper, nonconventional TMDs with large mass ratios, realized through Interstory Isolation Systems (IIS), are considered and the influence of the inelastic behaviour of the primary system on the overall structure response is anal…

Seismic retrofitMasonry nonlinearitiesNonconventional TMDMasonry structureSteel vertical addition
researchProduct