0000000000320667

AUTHOR

María José Ulloa-navas

Wnt-Dependent Oligodendroglial-Endothelial Interactions Regulate White Matter Vascularization and Attenuate Injury

Recent studies have indicated oligodendroglial-vascular crosstalk during brain development, but the underlying mechanisms are incompletely understood. We report that oligodendrocyte precursor cells (OPCs) contact sprouting endothelial tip cells in mouse, ferret and human neonatal white matter. Using transgenic mice, we show that increased or decreased OPC density results in cognate changes in white matter vascular investment. Hypoxia promoted both increased OPC numbers and higher white matter vessel density, and endothelial cell expression of the Wnt pathway targets Apcdd1 and Axin2, suggesting paracrine OPC-endothelial signaling. Conditional knockout of OPC Wntless resulted in diminished w…

research product

Tyramide Signal Amplification for Immunoelectron Microscopy

research product

Immunogold Labeling to Detect Streptococcus pyogenes Cas9 in Cell Culture and Tissues by Electron Microscopy

Final publication is available from Mary Ann Liebert, Inc., publishers https://doi.org/10.1089/crispr.2019.0032. The CRISPR-Cas9 system is a powerful and yet precise DNA-editing tool in rapid development. By combining immunogold labeling and electron microscopy with the novel CRISPR-Cas9 system, we propose a new method to gain insight into the biology of this tool. In this study, we analyzed different Cas9-induced systems such as HEK293T cell line, murine oligodendrocyte progenitor cells, brain and liver to detect Cas9 expression by immunoelectron microscopy. Our results show that while Cas9 expression could be found in the nuclei and nucleopores of transfected HEK293T cells, in transfected…

research product

Heterogeneous Pattern of Differentiation With BCAS1/NABC1 Expression in a Case of Oligodendroglioma

research product

Intravenous SPION-labeled adipocyte-derived stem cells targeted to the brain by magnetic attraction in a rat stroke model: An ultrastructural insight into cell fate within the brain

Abstract Mesenchymal stem cell therapy after stroke is a promising option investigated in animal models and clinical trials. The intravenous route is commonly used in clinical settings guaranteeing an adequate safety profile although low yields of engraftment. In this report, rats subjected to ischemic stroke were injected with adipose-derived stem cells (ADSCs) labeled with superparamagnetic iron oxide nanoparticles (SPIONs) applying an external magnetic field in the skull to retain the cells. Although most published studies demonstrate viability of ADSCs, only a few have used ultrastructural techniques. In our study, the application of a local magnetic force resulted in a tendency for hig…

research product