0000000000322506

AUTHOR

L. Infante

showing 11 related works from this author

High redshift galaxies in the ALHAMBRA survey

2015

International audience

[PHYS]Physics [physics][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]ComputingMilieux_MISCELLANEOUS
researchProduct

The ALHAMBRA survey: An empirical estimation of the cosmic variance for merger fraction studies based on close pairs

2014

[Aims]: Our goal is to estimate empirically the cosmic variance that affects merger fraction studies based on close pairs for the first time. [Methods]: We compute the merger fraction from photometric redshift close pairs with 10 h−1 kpc ≤ rp ≤ 50 h−1 kpc and Δv ≤ 500 km s−1 and measure it in the 48 sub-fields of the ALHAMBRA survey. We study the distribution of the measured merger fractions that follow a log-normal function and estimate the cosmic variance σv as the intrinsic dispersion of the observed distribution. We develop a maximum likelihood estimator to measure a reliable σv and avoid the dispersion due to the observational errors (including the Poisson shot noise term). [Results]: …

Galaxies: fundamental parametersCosmology and Nongalactic Astrophysics (astro-ph.CO)Stellar massGalaxies: statisticsFOS: Physical sciencesAstrophysicsinteractions [Galaxies]Astrophysics::Cosmology and Extragalactic AstrophysicsPoisson distribution01 natural sciencesLuminositysymbols.namesakestatistics [Galaxies]0103 physical sciences010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhotometric redshiftPhysics[PHYS]Physics [physics]COSMIC cancer database010308 nuclear & particles physicsAstronomy and AstrophysicsCosmic varianceRedshiftGalaxyGalaxies: interactionsSpace and Planetary Sciencefundamental parameters [Galaxies]symbols[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The ALHAMBRA survey: Discovery of a faint QSO at z = 5.41

2013

[Aims]: We aim to illustrate the potentiality of the Advanced Large, Homogeneous Area, Medium-Band Redshift Astronomical (ALHAMBRA) survey to investigate the high-redshift universe through the detection of quasi stellar objects (QSOs) at redshifts higher than 5. [Methods]: We searched for QSOs candidates at high redshift by fitting an extensive library of spectral energy distributions-including active and non-active galaxy templates, as well as stars-to the photometric database of the ALHAMBRA survey (composed of 20 optical medium-band plus the 3 broad-band JHKs near-infrared filters). [Results]: Our selection over ≈1 square degree of ALHAMBRA data (∼1/4 of the total area covered by the sur…

QSOSAbsolute magnitudeCosmology and Nongalactic Astrophysics (astro-ph.CO)active [Galaxies]Young stellar objectContinuum (design consultancy)FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLuminosityhigh-redshift [Galaxies]emission lines [Quasars]Galaxies: distances and redshiftsdistances and redshifts [Galaxies]Astrophysics::Galaxy AstrophysicsPhysicsQuasars: emission linesGalaxies: high-redshiftGalaxies: evolutiongeneral [Quasars]Astronomy and AstrophysicsGalaxies: activeevolution [Galaxies]RedshiftGalaxyQuasars: generalBlack holeSpace and Planetary ScienceAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The ALHAMBRA Project: A large area multi medium-band optical and NIR photometric survey

2008

(ABRIDGED) We describe the first results of the ALHAMBRA survey which provides cosmic tomography of the evolution of the contents of the Universe over most of Cosmic history. Our approach employs 20 contiguous, equal-width, medium-band filters covering from 3500 to 9700 A, plus the JHKs bands, to observe an area of 4 sqdeg on the sky. The optical photometric system has been designed to maximize the number of objects with accurate classification by SED and redshift, and to be sensitive to relatively faint emission lines. The observations are being carried out with the Calar Alto 3.5m telescope using the cameras LAICA and O-2000. The first data confirm that we are reaching the expected magnit…

Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAstrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

The ALHAMBRA survey: accurate merger fractions derived by PDF analysis of photometrically close pairs

2015

[Aims]: Our goal is to develop and test a novel methodology to compute accurate close-pair fractions with photometric redshifts. [Methods]: We improved the currently used methodologies to estimate the merger fraction fm from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space; (ii) including the variation in the luminosity of the sources with z in both the sample selection and the luminosity ratio constrain; and (iii) splitting individual PDFs into red and blue spectral templates to reliably work with colour selections.We tested the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey.…

Galaxies: statisticsmedia_common.quotation_subjectAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsEuropean Social Fundinteractions [Galaxies]Public administration01 natural sciencesstatistics [Galaxies]Excellence0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSmedia_commonPhysics[PHYS]Physics [physics]Government010308 nuclear & particles physicsGalaxies: evolutionAstronomy and Astrophysicsevolution [Galaxies]Galaxies: interactionsWork (electrical)Space and Planetary ScienceResearch council[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Near-IR Galaxy Counts and Evolution from the Wide-Field ALHAMBRA survey

2009

arxiv:0902.2403v1

Cosmology and Nongalactic Astrophysics (astro-ph.CO)LogarithmFOS: Physical sciencesAstrophysicsSurveysSquare (algebra)LuminosityPhotometry (optics)high-redshift [Galaxies]galaxies [Infrared]observations [Cosmology]Physicsphotometry [Galaxies]Cosmology: observationsGalaxies: high-redshiftGalaxies: evolutionAstronomy and AstrophysicsGalaxies: photometryH bandInfrared: galaxiesevolution [Galaxies]J bandRedshiftGalaxySpace and Planetary ScienceAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The ALHAMBRA survey: Accurate merger fractions by PDF analysis of photometric close pairs

2014

Our goal is to develop and test a novel methodology to compute accurate close pair fractions with photometric redshifts. We improve the current methodologies to estimate the merger fraction f_m from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space, (ii) including the variation in the luminosity of the sources with z in both the selection of the samples and in the luminosity ratio constrain, and (iii) splitting individual PDFs into red and blue spectral templates to deal robustly with colour selections. We test the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. The merger frac…

Astrophysics of Galaxies (astro-ph.GA)Astrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - Astrophysics of GalaxiesAstrophysics::Galaxy Astrophysics
researchProduct

The impact from survey depth and resolution on the morphological classification of galaxies

2015

We consistently analyse for the first time the impact of survey depth and spatial resolution on the most used morphological parameters for classifying galaxies through non-parametric methods: Abraham and Conselice-Bershady concentration indices, Gini, M20moment of light, asymmetry, and smoothness. Three different non-local data sets are used, Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) and Subaru/XMMNewton Deep Survey (SXDS, examples of deep ground-based surveys), and Cosmos Evolution Survey (COSMOS, deep space-based survey). We used a sample of 3000 local, visually classified galaxies, measuring their morphological parameters at their real redshifts (z ~ 0)…

Physics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]FOS: Physical sciencesAstronomy and Astrophysicsgalaxies: fundamental parametersEuropean Social FundAstrophysics::Cosmology and Extragalactic AstrophysicsResolution (logic)SurveysAstrophysics - Astrophysics of GalaxiessurveysSpace and Planetary ScienceResearch council[SDU]Sciences of the Universe [physics]Astrophysics of Galaxies (astro-ph.GA)fundamental parameters [Galaxies]Regional scienceChristian ministry
researchProduct

Lyman break and ultraviolet-selected galaxies at z ̃ 1-I. Stellar populations from the ALHAMBRA survey

2013

We take advantage of the exceptional photometric coverage provided by the combination of GALEX data in the ultraviolet (UV) and the ALHAMBRA survey in the optical and near-infrared to analyse the physical properties of a sample of 1225 GALEX-selected Lyman break galaxies (LBGs) at 0.8 ≲ z ≲ 1.2 that are located in the COSMOS field. This is the largest sample of LBGs studied in this redshift range to date. According to a spectral energy distribution (SED) fitting with synthetic stellar population templates, we find that LBGs at z ̃ 1 are mostly young galaxies with a median age of 341 Myr and have intermediate dust attenuation, (Es(B - V)) ̃ 0.20. Owing to the selection criterion, LBGs at z ̃…

media_common.quotation_subjectLibrary scienceAstrophysics::Cosmology and Extragalactic Astrophysicsstar formation [Galaxies]high-redshift [Galaxies]ExcellenceAstrophysics::Solar and Stellar Astrophysicsobservations [Cosmology]Astrophysics::Galaxy Astrophysicsmedia_commonPhysicsGalaxies: star formationphotometry [Galaxies]Cosmology: observationsGalaxies: high-redshiftAstronomyGalaxies: evolutionAstronomy and AstrophysicsGalaxies: photometryevolution [Galaxies]Galaxygalaxies [Ultraviolet]Space and Planetary ScienceUltraviolet: galaxiesAstrophysics::Earth and Planetary AstrophysicsAdministration (government)
researchProduct

Quasi-stellar objects in the ALHAMBRA survey

2012

[Context]: Even the spectroscopic capabilities of today's ground and space-based observatories can not keep up with the enormous flow of detections (>10 5 deg -2) unveiled in modern cosmological surveys as: i) would be required enormous telescope time to perform the spectroscopic follow-ups and ii) spectra remain unattainable for the fainter detected population. In the past decade, the typical accuracy of photometric redshift (photo-z) determination has drastically improved. Nowdays, it has become a perfect complement to spectroscopy, closing the gap between photometric surveys and their spectroscopic follow-ups. The photo-z precision for active galactic nuclei (AGN) has always lagged behin…

QSOSPhysicseducation.field_of_studyCosmology and Nongalactic Astrophysics (astro-ph.CO)PopulationFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsStellar classificationGalaxyRedshiftPhotometry (optics)StarsSpace and Planetary ScienceAstrophysics::Solar and Stellar AstrophysicseducationAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhotometric redshiftAstronomy & Astrophysics
researchProduct

The ALHAMBRA survey: reliable morphological catalogue of 22 051 early- and late-type galaxies

2013

Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) is photometric survey designed to trace the cosmic evolution and cosmic variance. It covers a large area of ~4 deg2 in eight fields, where seven fields overlap with other surveys, allowing us to have complementary data in other wavelengths. All observations were carried out in 20 continuous, medium band (30 nm width) optical and 3 near-infrared (JHK) bands, providing the precise measurements of photometric redshifts. In addition, morphological classification of galaxies is crucial for any kind of galaxy formation and cosmic evolution studies, providing the information about star formation histories, their environme…

Galaxies: fundamental parametersCosmology and Nongalactic Astrophysics (astro-ph.CO)Galaxies: statisticsFOS: Physical sciencesLibrary scienceAstrophysics::Cosmology and Extragalactic AstrophysicsEuropean Social FundSurveys01 natural sciencesstatistics [Galaxies]0103 physical sciences10. No inequality010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsLate typeAstronomyAstronomy and AstrophysicsSpace and Planetary ScienceResearch councilfundamental parameters [Galaxies]Christian ministry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Data releaseAstrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct