0000000000323203
AUTHOR
Sébastien Bonhommeau
Selective Photoswitching of the Binuclear Spin Crossover Compound{[Fe(bt)(NCS)2]2(bpm)}into Two Distinct Macroscopic Phases
The low-spin (LS-LS, $S=0$) diamagnetic form of the binuclear spin crossover complex ${[\mathrm{Fe}(\mathrm{bt})(\mathrm{NCS}{)}_{2}{]}_{2}(\mathrm{bpm})}$ was selectively photoconverted into two distinct macroscopic phases at different excitation wavelengths (1342 or 647.1 nm). These long-lived metastable phases have been identified, respectively, as the symmetry-broken paramagnetic form (HS-LS, $\mathrm{S}=2$) and the antiferromagnetically coupled (HS-HS, $S=0$) high-spin form of the compound. The selectivity may be explained by the strong coupling of the primary excited states to the paramagnetic state.
Titelbild: One Shot Laser Pulse Induced Reversible Spin Transition in the Spin-Crossover Complex [Fe(C4H4N2){Pt(CN)4}] at Room Temperature (Angew. Chem. 26/2005)
Cover Picture: One Shot Laser Pulse Induced Reversible Spin Transition in the Spin-Crossover Complex [Fe(C4H4N2){Pt(CN)4}] at Room Temperature (Angew. Chem. Int. Ed. 26/2005)
Room-Temperature Magnetic Bistability in a Salt of Organic Radical Ions
International audience; Cocrystallization of 7,7′,8,8′-tetracyanoquinodimethane radical anion (TCNQ −•) and 3-methylpyridinium-1,2,3,5dithiadiazolyl radical cation (3-MepyDTDA +•) afforded isostructural acetonitrile (MeCN) or propionitrile (EtCN) solvates containing cofacial π dimers of homologous components. Loss of lattice solvent from the diamagnetic solvates above 366 K affords a high-temperature paramagnetic phase containing discrete TCNQ −• and weakly bound π dimers of 3-MepyDTDA +• , as evidenced by X-ray diffraction methods and magnetic susceptibility measurements. Below 268 K, a first-order phase transition occurs, leading to a low-temperature diamagnetic phase with TCNQ −• σ dimer…
Spin Crossover Metal-Organic Frameworks with Inserted Photoactive Guests: On the Quest to Control the Spin State by Photoisomerization
International audience; Three Hofmann-like metal-organic frameworks {Fe(bpac)[Pt(CN)4]}•G (bpac=1,2-bis(4-pyridyl)acetylene) were synthesized with photoisomerizable guest molecules (G = trans-azobenzene, trans-stilbene or cis-stilbene) and were characterized by elemental analysis, thermogravimetry and powder X-ray diffraction. The insertion of guest molecules and their conformation were inferred from Raman and FTIR spectra and from single-crystal X-ray diffraction and confronted with computational simulation. The magnetic and photomagnetic behaviors of the framework are significantly altered by the different guest molecules and different conformations. On the other hand, photoisomerization …
One Shot Laser Pulse Induced Reversible Spin Transition in the Spin-Crossover Complex [Fe(C4H4N2){Pt(CN)4}] at Room Temperature
Synthesis, crystal structures, and solid state quadratic nonlinear optical properties of a series of stilbazolium cations combined with gold cyanide counter-ion
Three salts built up from (E)-4′-(dimethylamino)-stilbazolium (DMAS)H+, (E)-4′-(diethylamino)-stilbazolium (DEAS)H+, (E)-4′-{2-(methoxymethyl) pyrrolidinyl}-stilbazolium (MPS)H+, and gold cyanide as a counter-ion, are reported. The crystal structures have been solved for (DEAS)H+ Au(CN)2− (Cc space group), and for (MPS)H+ Au(CN)2− (P1 space group). The semi-empirical (ZINDO) calculated static hyperpolarizability (β0) of (MPS)H+ is equal to 147 × 10−30 cm5esu−1, in solid state, which is 25% higher than that of the cation of the well known (E)-4′-(dimethylamino)-methylstilbazolium tosylate (DAST). (MPS)H+ Au(CN)2− exhibits a unique crystal structure in which the cations are perfectly aligned.…
Magnetism and Molecular Nonlinear Optical Second-Order Response Meet in a Spin Crossover Complex
International audience; The quadratic hyperpolarizability of two inorganic Schiff base metal complexes which differ from each other by the nature of the central metal ion (FeII or ZnII) is estimated using hyper-Rayleigh light-scattering (HRS) measurements. The investigated FeII microcrystals exhibit a thermal spin-crossover (SCO) from a diamagnetic to a paramagnetic state centered at T1/2 = 233 K that can be reproduced by the HRS signal whose modest intensity is mainly due to their centrosymmetric packing structure. Diamagnetic ZnII microcrystals even lead to much weaker (∼400 times) HRS intensities which are in addition temperature-independent. These observations allow us to ascribe the ch…
Metal-organic magnets with large coercivity and ordering temperatures up to 242°C.
International audience; Magnets derived from inorganic materials (e.g., oxides, rare-earth–based, and intermetallic compounds) are key components of modern technological applications. Despite considerable success in a broad range of applications, these inorganic magnets suffer several drawbacks, including energetically expensive fabrication, limited availability of certain constituent elements, high density, and poor scope for chemical tunability. A promising design strategy for next-generation magnets relies on the versatile coordination chemistry of abundant metal ions and inexpensive organic ligands. Following this approach, we report the general, simple, and efficient synthesis of light…
CCDC 2042717: Experimental Crystal Structure Determination
Related Article: Barbora Brachňaková, Ján Moncoľ, Ján Pavlik, Ivan Šalitroš, Sébastien Bonhommeau, Francisco Javier Valverde-Muñoz, Lionel Salmon, Gábor Molnár, Lucie Routaboul, Azzedine Bousseksou|2021|Dalton Trans.|50|8877|doi:10.1039/D1DT01057C
CCDC 1983877: Experimental Crystal Structure Determination
Related Article: Panagiota Perlepe, Itziar Oyarzabal, Aaron Mailman, Morgane Yquel, Mikhail Platunov, Iurii Dovgaliuk, Mathieu Rouzières, Philippe Négrier, Denise Mondieig, Elizaveta A. Suturina, Marie-Anne Dourges, Sébastien Bonhommeau, Rebecca A. Musgrave, Kasper S. Pedersen, Dmitry Chernyshov, Fabrice Wilhelm, Andrei Rogalev, Corine Mathonière, Rodolphe Clérac|2020|Science|6516|587|doi:10.1126/science.abb3861
CCDC 2042716: Experimental Crystal Structure Determination
Related Article: Barbora Brachňaková, Ján Moncoľ, Ján Pavlik, Ivan Šalitroš, Sébastien Bonhommeau, Francisco Javier Valverde-Muñoz, Lionel Salmon, Gábor Molnár, Lucie Routaboul, Azzedine Bousseksou|2021|Dalton Trans.|50|8877|doi:10.1039/D1DT01057C
CCDC 2007863: Experimental Crystal Structure Determination
Related Article: Panagiota Perlepe, Itziar Oyarzabal, Aaron Mailman, Morgane Yquel, Mikhail Platunov, Iurii Dovgaliuk, Mathieu Rouzières, Philippe Négrier, Denise Mondieig, Elizaveta A. Suturina, Marie-Anne Dourges, Sébastien Bonhommeau, Rebecca A. Musgrave, Kasper S. Pedersen, Dmitry Chernyshov, Fabrice Wilhelm, Andrei Rogalev, Corine Mathonière, Rodolphe Clérac|2020|Science|6516|587|doi:10.1126/science.abb3861