0000000000323632
AUTHOR
Fernando De La Cruz
Genomic analysis of the emergence and evolution of multidrug resistance during a Klebsiella pneumoniae outbreak including carbapenem and colistin resistance
et al.
A classification scheme for mobilization regions of bacterial plasmids
Transmissible plasmids can be classified according to their mobilization ability, as being conjugative (self-transmissible) or mobilizable (transmissible only in the presence of additional conjugative functions). Naturally occurring mobilizable plasmids carry the genetic information necessary for relaxosome formation and processing, but lack the functions required for mating pair formation. Mobilizable plasmids have a tremendous impact in horizontal gene transfer in nature, including the spread of antibiotic resistance. However, analysis of their promiscuity and diversity has attracted less attention than that of conjugative plasmids. This review will focus on the analysis of the diversity …
Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License.-- et al.
Plasmid conjugation from Proteobacteria as evidence for the origin of xenologous genes in Cyanobacteria
Comparative genomics have shown that 5% of Synechococcus elongatus PCC 7942 genes are of probable proteobacterial origin. To investigate the role of interphylum conjugation in cyanobacterial gene acquisition, we tested the ability of a set of prototype proteobacterial conjugative plasmids (RP4, pKM101, R388, R64, and F) to transfer DNA from Escherichia coli to S. elongatus. A series of BioBrick-compatible, mobilizable shuttle vectors was developed. These vectors were based on the putative origin of replication of the Synechococcus resident plasmid pANL. Not only broad-host-range plasmids, such as RP4 and R388, but also narrower-host-range plasmids, such as pKM101, all encoding MPFT-type IV …
Toward minimal bacterial cells: evolution vs. design.
Abstract Recent technical and conceptual advances in the biological sciences opened the possibility of the construction of newly designed cells. In this paper we review the state of the art of cell engineering in the context of genome research, paying particular attention to what we can learn on naturally reduced genomes from either symbiotic or free living bacteria. Different minimal hypothetically viable cells can be defined on the basis of several computational and experimental approaches. Projects aiming at simplifying living cells converge with efforts to make synthetic genomes for minimal cells. The panorama of this particular view of synthetic biology lead us to consider the use of d…