0000000000324169

AUTHOR

H. Nagahama

showing 12 related works from this author

A test of charge-parity-time invariance at the atto-electronvolt scale

2017

We developed a novel fast measurement procedure for cyclotron frequency comparisons of two individual particles in a Penning trap, which enabled us to compare the charge-to-mass ratio of the proton and the antiproton with a fractional precision of 69 parts per trillion. To date this is the most precise test of charge-parity-time invariance using baryons. Our measurements were performed at cyclotron frequencies of about 30 MHz, which means that charge-parity-time symmetry holds at the atto-electronvolt scale.

Nuclear physicsPhysicsBaryonAntiparticleScale (ratio)Physics in GeneralAntimatterElectronvoltPräzisionsexperimente - Abteilung BlaumParity (mathematics)NucleonNuclear ExperimentAtto-
researchProduct

Sixfold improved single particle measurement of the magnetic moment of the antiproton

2017

Our current understanding of the Universe comes, among others, from particle physics and cosmology. In particle physics an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, a striking matter/antimatter imbalance is observed. This contradiction inspires comparisons of the fundamental properties of particles and antiparticles with high precision. Here we report on a measurement of the g-factor of the antiproton with a fractional precision of 0.8 parts per million at 95% confidence level. Our value /2=2.7928465(23) outperforms the previous best measurement by a factor of 6. The result is consistent with our proton g-factor measurement gp/2=2.7928473…

AntiparticleParticle physicsLorentz transformationSciencelorentzGeneral Physics and Astronomysystem01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCosmologyNuclear physicssymbols.namesakeStandard-Model Extension0103 physical sciencesNuclear Physics - Experimentcpt010306 general physicsNuclear ExperimentPhysicsMultidisciplinary010308 nuclear & particles physicsQpenning trapParity (physics)General ChemistryPenning trapAntiprotonAntimattersymbolstestsddc:500Präzisionsexperimente - Abteilung Blaum
researchProduct

A reservoir trap for antiprotons

2015

We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic p…

Speichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsMagnetic noiseAtomic Physics (physics.atom-ph)Other Fields of PhysicsFOS: Physical sciences7. Clean energy01 natural sciencesIon trappingphysics.atom-ph010305 fluids & plasmasPhysics - Atomic PhysicsNuclear physicsTrap (computing)0103 physical sciencesPhysics::Atomic PhysicsPhysical and Theoretical ChemistryDetectors and Experimental Techniques010306 general physicsNuclear ExperimentInstrumentationphysics.ins-detSpectroscopyPhysicsInstrumentation and Detectors (physics.ins-det)Condensed Matter PhysicsPenning trapAntiprotonPhysics::Accelerator Physics
researchProduct

Improved limit on the directly measured antiproton lifetime

2017

Continuous monitoring of a cloud of antiprotons stored in a Penning trap for 405 days enables us to set an improved limit on the directly measured antiproton lifetime. From our measurements we extract a storage time of $3.15\times {10}^{8}$ equivalent antiproton-seconds, resulting in a lower lifetime limit of ${\tau }_{\bar{{\rm{p}}}}\gt 10.2\,{\rm{a}}$ with a confidence level of $68 \% $. This result improves the limit on charge-parity-time violation in antiproton decays based on direct observation by a factor of 7.

CPT symmetryPenning trapGeneral Physics and Astronomypenning traps01 natural sciencesLower limit010305 fluids & plasmasNuclear physicsContinuous monitoring0103 physical sciencesddc:530Limit (mathematics)Physics::Atomic Physics010306 general physicsNuclear ExperimentPhysicsCPT invariancePhysicsResearchContinuous monitoringDirect observationsDirect observationConfidence levelsPenning trapCharge parityAntiprotonlifetimesPhysics::Accelerator PhysicsCP violationHigh Energy Physics::ExperimentDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikPräzisionsexperimente - Abteilung BlaumantiprotonsParticle Physics - Experiment
researchProduct

High-precision comparison of the antiproton-to-proton charge-to-mass ratio

2015

Invariance under the charge, parity, time-reversal (CPT) transformation$^{1}$ is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry—that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime—although it is model dependent$^{2}$. A number of high-precision CPT and Lorentz invariance tests—using a co-magnetometer, a torsion pendulum and a maser, among others—have been performed$^{3}$, but only a few direct high-precision CPT tests …

PhysicsAntiparticleParticle physicsMultidisciplinaryCPT symmetryLorentz transformationLorentz covarianceBaryonsymbols.namesakeStandard-Model ExtensionAntiprotonQuantum mechanicsAntimattersymbolsPräzisionsexperimente - Abteilung BlaumParticle Physics - Experiment
researchProduct

Double-trap measurement of the proton magnetic moment at 0.3 parts per billion precision

2017

Precise knowledge of the fundamental properties of the proton is essential for our understanding of atomic structure as well as for precise tests of fundamental symmetries. We report on a direct high-precision measurement of the magnetic moment μp of the proton in units of the nuclear magneton μN. The result, μp = 2.79284734462 (±0.00000000082) μN, has a fractional precision of 0.3 parts per billion, improves the previous best measurement by a factor of 11, and is consistent with the currently accepted value. This was achieved with the use of an optimized double–Penning trap technique. Provided a similar measurement of the antiproton magnetic moment can be performed, this result will enable…

PhysicsMultidisciplinaryMagnetic momentProton010308 nuclear & particles physicsProton magnetic moment7. Clean energy01 natural sciencesSymmetry (physics)Nuclear physicsBaryonAntiprotonAntimatter0103 physical sciencesPräzisionsexperimente - Abteilung BlaumAtomic physics010306 general physicsNuclear magnetonScience
researchProduct

Towards an Improved Measurement of the Proton Magnetic Moment

2017

The BASE collaboration performed the most precise measurement of the proton magnetic moment. By applying the so-called double Penning-trap method with a single proton a fractional precision of 3.3 parts-per-billion was reached. This article describes the primary limitations of the last measurement and discusses improvements to reach the sub-parts-per-billion level.

PhysicsLarmor precessionMagnetic momentProton magnetic momentCyclotronMagnetic fieldlaw.inventionPhysics in GenerallawAntimatterPrecessionPräzisionsexperimente - Abteilung BlaumAtomic physicsNucleonProceedings of the 12th International Conference on Low Energy Antiproton Physics (LEAP2016)
researchProduct

Sympathetic cooling of protons and antiprotons with a common endcap Penning trap.

2017

We present an experiment to sympathetically cool protons and antiprotons in a Penning trap by resonantly coupling the particles to laser cooled beryllium ions using a common endcap technique. Our analysis shows that preparation of (anti)protons at mK temperatures on timescales of tens of seconds is feasible. Successful implementation of the technique will have immediate and significant impact on high-precision comparisons of the fundamental properties of protons and antiprotons. This in turn will provide some of the most stringent tests of the fundamental symmetries of the Standard Model.

Sympathetic coolingSpeichertechnik - Abteilung BlaumProtonAtomic Physics (physics.atom-ph)Other Fields of PhysicsFOS: Physical scienceschemistry.chemical_element7. Clean energy01 natural sciencesphysics.atom-ph010305 fluids & plasmaslaw.inventionIonPhysics - Atomic PhysicsNuclear physicslawLaser cooling0103 physical sciencesddc:530Physics::Atomic Physics010306 general physicsNuclear ExperimentPhysicsLaserPenning trapAtomic and Molecular Physics and OpticschemistryAntiprotonPhysics::Accelerator PhysicsBeryllium
researchProduct

Observation of individual spin quantum transitions of a single antiproton

2017

We report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin-state determination, which is based on the unambiguous detection of axial frequency shifts in presence of a strong magnetic bottle, reaches a fidelity of 92.1% . Spin-state initialization with >99.9% fidelity and an average initialization time of 24 min are demonstrated. This is a major step towards an antiproton magnetic moment measurement with a relative uncertainty on the part-per-billion level. We report on the detection of individual spin quantum transitions of a single trapped antiproton in a Penning trap. The spin-state determination, which is based on the unam…

Nuclear and High Energy PhysicsAtomic Physics (physics.atom-ph)Spin transitionOther Fields of PhysicsInitializationFOS: Physical sciences01 natural sciencesphysics.atom-phPhysics - Atomic Physics010309 optics0103 physical sciencesddc:530Physics::Atomic Physics010306 general physicsQuantumSpin-½PhysicsMeasurement methodMagnetic momentPenning traplcsh:QC1-999AntiprotonDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikAtomic physicsPräzisionsexperimente - Abteilung Blaumlcsh:Physics
researchProduct

Highly sensitive superconducting circuits at ∼700 kHz with tunable quality factors for image-current detection of single trapped antiprotons

2016

We developed highly-sensitive image-current detection systems based on superconducting toroidal coils and ultra-low noise amplifiers for non-destructive measurements of the axial frequencies (550$\sim$800$\,$kHz) of single antiprotons stored in a cryogenic multi-Penning-trap system. The unloaded superconducting tuned circuits show quality factors of up to 500$\,$000, which corresponds to a factor of 10 improvement compared to our previously used solenoidal designs. Connected to ultra-low noise amplifiers and the trap system, signal-to-noise-ratios of 30$\,$dB at quality factors of > 20$\,$000 are achieved. In addition, we have developed a superconducting switch which allows continuous tu…

SuperconductivityPhysicsSpeichertechnik - Abteilung BlaumPhysics - Instrumentation and DetectorsSolenoidal vector fieldbusiness.industryAmplifierDetectorFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)01 natural sciencesNoise (electronics)010305 fluids & plasmasQuality (physics)Antiproton0103 physical sciencesOptoelectronicsDetectors and Experimental Techniques010306 general physicsbusinessphysics.ins-detInstrumentationElectronic circuit
researchProduct

Demonstration of the double Penning Trap technique with a single proton

2013

Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the continuous Stern-Gerlach effect was applied. This first demonstration of the double Penning trap technique with a single proton suggests that the antiproton magnetic moment measurement can potentially be improved by three orders of magnitude or more. Spin flips of a single proton were driven in a Penning trap with a homogeneous magnetic field. For the spin-state analysis the proton was transported into a second Penning trap with a superimposed magnetic bottle, and the cont…

Nuclear and High Energy PhysicsProtonOrders of magnitude (temperature)Atomic Physics (physics.atom-ph)Other Fields of PhysicsFOS: Physical sciencesGeonium atomPenning traps01 natural sciencesphysics.atom-phPhysics - Atomic Physics010305 fluids & plasmasFundamental symmetries0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsSpin (physics)Nuclear ExperimentPhysicsPenning trapCPT testsMagnetic fieldAntiprotonPhysics::Accelerator PhysicsIon trapAtomic physicsPhysics Letters B
researchProduct

A parts-per-billion measurement of the antiproton magnetic moment

2017

The magnetic moment of the antiproton is measured at the parts-per-billion level, improving on previous measurements by a factor of about 350. Comparing the fundamental properties of normal-matter particles with their antimatter counterparts tests charge–parity–time (CPT) invariance, which is an important part of the standard model of particle physics. Many properties have been measured to the parts-per-billion level of uncertainty, but the magnetic moment of the antiproton has not. Christian Smorra and colleagues have now done so, and report that it is −2.7928473441 ± 0.0000000042 in units of the nuclear magneton. This is consistent with the magnetic moment of the proton, 2.792847350 ± 0.0…

ProtonCPT symmetry01 natural sciencesddc:070Standard ModelNuclear physicsPhysics in Generalcharge–parity–time (CPT) invariance0103 physical sciencesddc:530atomic and molecular physicsddc:510010306 general physicsNuclear magnetonPhysicsMultidisciplinaryMagnetic moment010308 nuclear & particles physicsDewey Decimal Classification::500 | Naturwissenschaften::510 | MathematikSymmetry (physics)AntiprotonAntimatterHigh Energy Physics::ExperimentDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikPräzisionsexperimente - Abteilung BlaumAntiproton Decelerator facility
researchProduct