0000000000324695

AUTHOR

Guglielmo Rubinacci

0000-0003-0851-1035

Damping effect on the ITER vacuum vessel displacements during slow downward locked and rotating asymmetric vertical displacement events

Abstract In this paper, we present the electromechanical coupled analysis of the ITER vacuum vessel in case of slow downward locked and rotating Asymmetric VDEs. The numerical model for simulating the AVDE includes the asymmetric distribution of the halo currents obtained by a suitable 3D kink perturbation of a slow VDE downward computed by the 2D code DINA. In the case of a rotational AVDE, the rotation frequency of the kink asymmetry has been chosen to be ω = 2π × 5 rad/s. The model includes the mesh of the main passive components facing the plasma. The whole torus (360 degrees) has been discretized. It is shown that the very high complexity of the numerical model can be suitably treated.…

research product

Overview of the JET results in support to ITER

The 2014–2016 JET results are reviewed in the light of their significance for optimising the ITER research plan for the active and non-active operation. More than 60 h of plasma operation with ITER first wall materials successfully took place since its installation in 2011. New multi-machine scaling of the type I-ELM divertor energy flux density to ITER is supported by first principle modelling. ITER relevant disruption experiments and first principle modelling are reported with a set of three disruption mitigation valves mimicking the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, stressing the importance of the magnetic configurations and the recent m…

research product